5.為提倡市民節(jié)約用水,中國水利部確定每年的3月22日至28日為“中國水周”,某市統(tǒng)計局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如圖所示.
將月用水量落入各組的頻率視為概率,并假設每月的用水量相互獨立.
(1)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此,估計該地家庭的平均用水量及方差;
(2)求在未來連續(xù)3個月,有連續(xù)2個月的月用水量都不低于8噸,且另一個月的月用水量低于4噸的概率;
(3)①求月用水量低于8噸的概率;
②用X表示在未來3個月里用水量低于8噸的月數(shù),求隨機變量X的分布列及數(shù)學期望E(X).

分析 (1)由頻率分布圖得先求出用水量為2噸、6噸、10噸、14噸、18號的家庭所占概率,由此能求出該地家庭的平均用水量和方差的估計值.
(2)利用相互獨立事件乘法概率公式和互斥事件加法公式能求出在未來連續(xù)3個月,有連續(xù)2個月的月用水量都不低于8噸,且另一個月的月用水量低于4噸的概率.
(3)①由頻率分圖能求出月用水量低于8噸的概率.
②由題意得X的可能取值為0,1,2,3,且X~(3,0.4),由此能求出隨機變量X的分布列數(shù)學期望E(X).

解答 解:(1)由頻率分布圖得:
用水量2噸的家庭為0.0375×4=0.15,
用水量6噸的家庭為0.0625×4=0.25,
用水量10噸的家庭為0.075×4=0.3,
用水量14噸的家庭為0.05×4=0.2,
用水量18噸的家庭為0.025×4=0.1,
∴該地家庭的平均用水量的估計值為:2×0.15+6×0.25+10×0.3+14×0.2+18×0.1=9.4.
該地家庭的用水量方差的估計值為:(2-9.4)2×0.15+(6-9.4)2×0.25+(10-9.4)2×0.3+(14-9.4)2×0.2+(18-9.4)2×0.1=22.84.
(2)在未來連續(xù)3個月,有連續(xù)2個月的月用水量都不低于8噸,且另一個月的月用水量低于4噸的概率:
P=0.15×0.6×0.6+0.6×0.6×0.15=0.108.
(3))①月用水量低于8噸的概率P′=0.15+0.25=0.4.
②由題意得X的可能取值為0,1,2,3,且X~(3,0.4),
P(X=0)=${C}_{3}^{0}0.{6}^{3}$=0.216,
P(X=1)=${C}_{3}^{1}0.4×0.{6}^{2}$=0.432,
P(X=2)=${C}_{3}^{2}×0.{4}^{2}×0.6$=0.288,
P(X=3)=${C}_{3}^{3}0.{4}^{3}$=0.064,
∴隨機變量X的分布列為:

 X 0 1 2 3
 P 0.216 0.432 0.288 0.064
數(shù)學期望E(X)=0×0.216+1×0.432+2×0.288+3×0.064=1.2.

點評 本題考查頻率直方圖的應用,考查平均值的方差的估計值的求法,考查概率及離散型隨機變量的分布列和數(shù)學期望的求法,在歷年高考中都是必考題型之一.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設函數(shù)f:N→N,并且對所有正整數(shù)n,有f(n+1)>f(n),f(f(n))=3n,則f(2015)=( 。
A.2016B.3858C.4030D.6045

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1的左頂點為A、上頂點為B,光線通過點C(-1,0)射到線段AB(端點除外)上的點T,經(jīng)線段AB反射,其反射光線與橢圓交于點M.若∠CTM為鈍角,則T點的橫坐標m的范圍為(-3,$\frac{-3-\sqrt{3}}{2}$)∪($\frac{\sqrt{3}-3}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知橢圓與雙曲線有公共的左右焦點F1,F(xiàn)2,在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形,設橢圓,雙曲線的離心率分別為e1,e2,則e2-e1的取值范圍是($\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{{e}^{x}+a}{{e}^{x}+b}$是定義在上R的奇函數(shù),則b的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在△ABC中,BD和CE分別是兩邊上的中線,且BD⊥CE,BD=6,CE=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,正方形ABCD所在平面與正方形ABEF所在的平面所成的二面角為θ,AD與BF夾角的余弦值為$\frac{\sqrt{2}}{4}$,試求θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在某個路口測試汽車的行駛速度.繪出如圖直方圖,已知左邊三個矩形面積構成公差為$\frac{1}{10}$的等差數(shù)列,右邊三個矩形面積構成公比為$\frac{1}{2}$的等比數(shù)列,若時速在60~70內(nèi)有78輛車.
(I)求抽檢車輛總數(shù);
(Ⅱ)如果該路段限速“70”,那么在抽檢車輛中任抽取一輛,求它超速的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知α⊥β,下列命題正確個數(shù)有( 。
①α內(nèi)的已知直線必垂直于β內(nèi)的任意直線;
②α內(nèi)的已知直線必垂直于β內(nèi)的無數(shù)條直線;
③α內(nèi)的任一直線必垂直于β.
A.3B.2C.1D.0

查看答案和解析>>

同步練習冊答案