16.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1的左頂點為A、上頂點為B,光線通過點C(-1,0)射到線段AB(端點除外)上的點T,經(jīng)線段AB反射,其反射光線與橢圓交于點M.若∠CTM為鈍角,則T點的橫坐標(biāo)m的范圍為(-3,$\frac{-3-\sqrt{3}}{2}$)∪($\frac{\sqrt{3}-3}{2}$,0).

分析 只要求出∠CTM為直角時T的橫坐標(biāo).由圖可得,這樣的T點有兩個.求出A,B,|AB|的長,可得∠BAC=30°,運用解直角三角形的知識,結(jié)合反射定律,可得T的橫坐標(biāo),再由圖形觀察,即可得到范圍.

解答 解:只要求出∠CTM為直角時T的橫坐標(biāo).
由圖可得,這樣的T點有兩個.
先求線段AB上面的一個,設(shè)為T1,
A(-3,0),B(0,$\sqrt{3}$),|AB|=$\sqrt{9+3}$=2$\sqrt{3}$,
即有∠BAC=30°,
又|AC|=2,可得C到AB的距離CN為1,
由∠CT1M為直角,由反射定律可得,∠AT1C=45°,
AN=$\sqrt{4-1}$=$\sqrt{3}$,T1N=1,即有AT1=1+$\sqrt{3}$,
T1的橫坐標(biāo)即為$\frac{\sqrt{3}}{2}$(1+$\sqrt{3}$)-3=$\frac{\sqrt{3}-3}{2}$,
同理可得AT2=$\sqrt{3}$-1,
T2的橫坐標(biāo)為$\frac{-3-\sqrt{3}}{2}$,
由圖象觀察可得,若∠CTM為鈍角,
則T點的橫坐標(biāo)m的范圍是(-3,為$\frac{-3-\sqrt{3}}{2}$)∪($\frac{\sqrt{3}-3}{2}$,0).
故答案為:(-3,$\frac{-3-\sqrt{3}}{2}$)∪($\frac{\sqrt{3}-3}{2}$,0).

點評 本題考查橢圓的方程和性質(zhì),考查光線反射定律的運用,同時考查轉(zhuǎn)化思想的運用,以及數(shù)形結(jié)合的思想方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知一個幾何體的三視圖如圖所示,正視圖、俯視圖為直角三角形,側(cè)視圖是直角梯形,則它的體積等于(  )
A.$\frac{10}{3}$B.$\frac{20}{3}$C.$\frac{40}{3}$D..20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四邊形PABC中,PB⊥AC,AD=BD=1,AC=3,E是PC上一點,且PE:EC=1:2,現(xiàn)將△PAC沿AC進(jìn)行翻折,得到如圖②所示的三棱錐P-ABC.
(1)證明:DE∥平面PAB;
(2)證明:在翻折的過程中,總有平面PDB⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.雙曲線方程為x2-4y2=-36,則它的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{36}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若直線l與橢圓$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1相交于A、B兩點,滿足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,且直線1與圓x2+y2=r2相切.
(1)求圓的方程;
(2)求弦長|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=a-bcosx的最大值為$\frac{3}{2}$,最小值為$-\frac{1}{2}$,求實數(shù)y=-4bsinax的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在正方體中,E、F為所在棱的中點,求證:D1、E、F、B四點共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為提倡市民節(jié)約用水,中國水利部確定每年的3月22日至28日為“中國水周”,某市統(tǒng)計局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如圖所示.
將月用水量落入各組的頻率視為概率,并假設(shè)每月的用水量相互獨立.
(1)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此,估計該地家庭的平均用水量及方差;
(2)求在未來連續(xù)3個月,有連續(xù)2個月的月用水量都不低于8噸,且另一個月的月用水量低于4噸的概率;
(3)①求月用水量低于8噸的概率;
②用X表示在未來3個月里用水量低于8噸的月數(shù),求隨機變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知D,E,F(xiàn)分別是△ABC三邊AB,BC,CA的中點,則下列等式不成立的是( 。
A.$\overrightarrow{FD}$+$\overrightarrow{DA}$=$\overrightarrow{FA}$B.$\overrightarrow{FD}$+$\overrightarrow{DE}$+$\overrightarrow{EF}$=0C.$\overrightarrow{DE}$+$\overrightarrow{DA}$=$\overrightarrow{EC}$D.$\overrightarrow{DA}$+$\overrightarrow{DE}$=$\overrightarrow{DF}$

查看答案和解析>>

同步練習(xí)冊答案