分析 利用向量的數(shù)量積運算,求出z=$\overrightarrow{OM}$•$\overrightarrow{ON}$=x+3y,利用z的幾何意義,即可得到結(jié)論.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
∵M(x,y)為D上的動點,點N的坐標(biāo)為(1,3),
∴z=$\overrightarrow{OM}$•$\overrightarrow{ON}$=x+3y,
由z=x+3y得y=-$\frac{1}{3}$x+$\frac{1}{3}$z,
平移直線y=-$\frac{1}{3}$x+$\frac{1}{3}$z,
由圖象可知當(dāng)直線y=-$\frac{1}{3}$x+$\frac{1}{3}$z經(jīng)過點A時,y=-$\frac{1}{3}$x+$\frac{1}{3}$z的截距最小,此時z最。
由$\left\{\begin{array}{l}{x-y-2=0}\\{x+2y-4=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{8}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即A($\frac{8}{3}$,$\frac{2}{3}$),
代入z=x+3y=$\frac{8}{3}$+$\frac{2}{3}$×3=$\frac{14}{3}$.
即目標(biāo)函數(shù)z=x+3y最小值為$\frac{14}{3}$.
故答案為:$\frac{14}{3}$.
點評 本題主要考查線性規(guī)劃的應(yīng)用以及數(shù)量積的運算,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{4}{9}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p或q為真,p且q為假,非p為真 | B. | p或q為假,p且q為假,非p為真 | ||
C. | p或q為真,p且q為假,非p為假 | D. | p或q為假,p且q為真,非p為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AO}$=$\overrightarrow{OD}$ | B. | $\overrightarrow{AO}$=2$\overrightarrow{OD}$ | C. | $\overrightarrow{AO}$=3$\overrightarrow{OD}$ | D. | $\overrightarrow{OD}$=2$\overrightarrow{AO}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com