11.方程sin2x+sin x-1-m=0在實數(shù)集上有解,則實數(shù)m的范圍為( 。
A.$[-\frac{5}{4},+∞)$B.$[-\frac{5}{4},1]$C.$(-∞,-\frac{5}{4}]$D.[-1,$\frac{5}{4}$]

分析 變形換元可得m=t2+t-1,t∈[-1,1],由二次函數(shù)區(qū)間的最值可得.

解答 解:∵sin2x+sinx-1-m=0
∴m=sin2x+sinx-1,
令sinx=t,則t∈[-1,1],
∴m=t2+t-1=(t+$\frac{1}{2}$)2-2,t∈[-1,1],
由二次函數(shù)的知識可知:
∴當(dāng)t=-$\frac{1}{2}$時,函數(shù)取最小值:-$\frac{5}{4}$,
當(dāng)t=1時,函數(shù)取最大值:1,
∴實數(shù)m的范圍為:$[-\frac{5}{4},1]$.
故選:B.

點評 本題考查正弦函數(shù)的定義域,涉及二次函數(shù)區(qū)間的最值,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)是定義在R上的偶函數(shù),且當(dāng)x<0時,f(x)=x+2,則f(1)的值為( 。
A.1B.-1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.正項數(shù)列{an}滿足:a1=1,a2=2,$\frac{1}{{a}_{n}{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+2}}$+$\frac{1}{{a}_{n+1}{a}_{n+2}}$=1(n∈N*),則前2015項的和S2015=(  )
A.4026B.4027C.4028D.4029

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>1}\\{{2}^{|x|},x≤1}\end{array}\right.$,若關(guān)于x的方程f(x)=k有3個不同的實根,則實數(shù)k的取值范圍為(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ax+b}{1+{x}^{2}}$是定義在(m,1)上的奇函數(shù)(a,b,m為常數(shù)),且f(2)=$\frac{4}{5}$.
(1)確定函數(shù)f(x)的解析式及定義域;
(2)判斷并利用定義證明f(x)在(m,1)的單調(diào)性.
(3)若對任意t∈[-2,2],是否存在實數(shù)x使f(tx-2)+f(x)<0恒成立?若存在則求出實數(shù)x的取值范圍,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,能用二分法求零點的是( 。
A.f(x)=log2xB.f(x)=-x2C.f(x)=x2D.f(x)=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{x}{{{x^2}+1}},(x∈R)$.
(Ⅰ)判定函數(shù)f(x)在區(qū)間[-1,1]上的單調(diào)性,并用定義法加以證明;
(Ⅱ)對于任意n個實數(shù)a1,a2,…,an(可以相等),求滿足|f(a1)|+|f(a2)|+…+|f(an)|≥50成立的正整數(shù)n的最小值;
(Ⅲ)設(shè)函數(shù)${g_n}(x)=f(x)-f{({n^2})_{\;}}(n∈{N^*})$在區(qū)間[0,1]上的零點為x=xn,試探究是否存在正整數(shù)n,使得x1+x2+…+xn≥2?若存在,求正整數(shù)n的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知命題p:?x∈[0,3],a≥-x2+2x-$\frac{2}{3}$,命題q:?x∈R,x2+4x+a=0,若命題“p∧q”是真命題,則實數(shù)a的范圍為[$\frac{1}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,已知∠B=45°,D是BC邊上一點,AD=3,AC=4,DC=2.求AB的長.

查看答案和解析>>

同步練習(xí)冊答案