已知圓C與圓(x+5)2+(y-6)2=16關(guān)于直線l:x-y=0對稱,則圓C的方程是
 
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:計(jì)算題,直線與圓
分析:根據(jù)平面直角坐標(biāo)系內(nèi)點(diǎn)關(guān)于直線y=x對稱的點(diǎn)對稱點(diǎn)的坐標(biāo)公式,求出圓心坐標(biāo),即可得到圓的方程.
解答: 解:∵點(diǎn)(x,y)關(guān)于直線x-y=0對稱的點(diǎn)為(y,x)
∴圓心(-5,6)關(guān)于直線x-y=0對稱的點(diǎn)為C(6,-5),
∴所求圓C的方程是(x-6)2+(y+5)2=16.
故答案為:(x-6)2+(y+5)2=16.
點(diǎn)評:本題考查圓的方程,著重考查了平面直角坐標(biāo)系內(nèi)點(diǎn)關(guān)于直線對稱的公式的知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求垂直于直線x+3y-5=0,且與點(diǎn)P(-1,0)的距離是
3
5
10
的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=x2
(1)求曲線f(x)在(1,1)點(diǎn)處的切線l的方程;
(2)求由曲線f(x)、直線x=0和直線l所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一條漸近線方程是x+2y=0,并經(jīng)過點(diǎn)(2,2),求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分形幾何學(xué)是數(shù)學(xué)家伯努瓦•曼得爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個樹形圖:

已知第三行有白圈5個,黑圈4個,我們采用“坐標(biāo)”來表示各行中的白圈、黑圈的個數(shù).比如第一行記為(1,0),第二行記為(2,1),第三行記為(5,4),則第四的白圈與黑圈的“坐標(biāo)”為
 
.照此規(guī)律,第n行中的白圈、黑圈的“坐標(biāo)”為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列等式:觀察各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則依此類推可得a6+b6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=
3
2
,BC=
1
2
,A=30°,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α是第四象限角,則角
α
2
的終邊在
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是橢圓
x2
169
+
y2
144
=1
上一點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn),若|PF1|等于4,則|PF2|等于( 。
A、22B、21C、20D、13

查看答案和解析>>

同步練習(xí)冊答案