已知二次函數(shù)f(x)=ax2+bx+c(c>0且為常數(shù))的導函數(shù)的圖象如圖.
(Ⅰ)求a,b的值;
(Ⅱ)令g(x)=
f(x)
x
,求y=g(x)在[1,+∞)上的最小值.
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值,二次函數(shù)的性質(zhì),導數(shù)的運算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)由題意可得f′(x)=2ax+b,結(jié)合所給的導函數(shù)的圖象可得b=1,且2a=
1-0
0+
1
2
=2,從而得到a、b的值.
(Ⅱ)對于y=g(x)=x+1+
c
x
,分當0<c<1時、當c>1時兩種情況,分別利用單調(diào)性、基本不等式求得g(x)的最小值.
解答: 解:(Ⅰ)由于二次函數(shù)f(x)=ax2+bx+c(c>0且為常數(shù))的導函數(shù)為f′(x)=2ax+b,
結(jié)合所給的導函數(shù)的圖象可得b=1,且2a=
1-0
0+
1
2
=2,解得a=1.
即a=b=1.
(Ⅱ)令g(x)=
f(x)
x
,則 y=g(x)=x+1+
c
x

當0<c<1時,函數(shù)g(x) 在[1,+∞)上是增函數(shù),故g(x)的最小值為g(1)=2+c.
當c>1時,g(x)=x+1+
c
x
≥1+2
x•
c
x
=1+2
c
,當且僅當x=
c
時,取等號.
綜上可得,當0<c<1時,g(x)的最小值為2+c;當c>1時,g(x)的最小值為1+2
c
點評:本題主要考查求函數(shù)的導數(shù),二次函數(shù)的性質(zhì),基本不等式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若點O和點F分別為橢圓
x2
2
+y2
=1的中心和左焦點,點P為橢圓上的任意一點,則
OP
FP
的最大值為( 。
A、
2
+2
B、
2
-1
C、
2
+4
D、
2
+
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱柱ABC-A1B1C1中,M、N分別是AB、A1C的中點,求證:MN∥平面BCB1C1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足條件
7x-5y-23≤0
x+7y-11≤0
4x+y+10≥0
,M(2,1),P(x,y),求:
(1)
y+7
x+4
的取值范圍;
(2)x2+y2的最大值和最小值;
(3)
OM
OP
的最大值;
(4)|
OP
|cos∠MOP的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|(x-3)•(x-a)<0,x∈N,a∈R},若集合M中有且只有一個元素,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,∠BAC是直角,AD是高,求證:如果BC=5CD,那么BC2=5AC2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E1
x2
a2
+
y2
b2
=1(a>b>0)橢圓E2的中心在坐標原點,焦點在x軸上,其長軸長和短軸長分別是橢圓E1長軸長和短軸長的
λ
倍(λ>0,λ≠1).
(Ⅰ)求橢圓E2的方程;并證明橢圓E1,E2的離心率相同;
(Ⅱ)當λ=2時,設(shè)M,N是橢圓E1上的兩個點,OM,ON的斜率分別是kOM,kON,且kOM•kON=-
b2
a2
(O是坐標原點),若OMPN是平行四邊形,證明:點P在橢圓E2上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}各項均為正數(shù),首項為a,對任意正整數(shù)n,an•an+1=
4n
2
恒成立.
(Ⅰ)若數(shù)列{an}為等比數(shù)列,求實數(shù)a的值;
(Ⅱ)記bn為數(shù)列{an}的前2n項的和,若對任意正整數(shù)n,不等式bn
11
4
(4n-1)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過一定點P,與已知直線a所成的角為60°的直線有
 
條.

查看答案和解析>>

同步練習冊答案