3.函數(shù)y=2x2-4x-3,(0<x<3)的值域為( 。
A.(-3,3)B.(-5,-3)C.(-5,3)D.(-5,+∞)

分析 配方確定函數(shù)在區(qū)間上的單調(diào)性,利用單調(diào)性即可求得函數(shù)的值域.

解答 解:y=2x2-4x-3=2(x-1)2-5,
∵x∈(0,3),
∴函數(shù)在(0,1)上單調(diào)減,在(1,3)上單調(diào)增,
∴f(x)max<f(3)=3,f(x)min>f(1)=-5,
∴y=2x2-4x-3,(0<x<3)的值域為(-5,3),
故選:C.

點評 本題考查二次函數(shù)的最值,解題的關鍵是配方確定函數(shù)在區(qū)間上的單調(diào)性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.變量x,y滿足條件$\left\{\begin{array}{l}{x-y+1≤0}\\{y≤1}\\{x≥-1}\end{array}\right.$,則(x-1)2+y2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.計算下列各題:
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)log3$\sqrt{27}$+lg25+lg4+7log72+(-9.8)0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=lg(x2-2x)的單調(diào)增區(qū)間為( 。
A.(2,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知關于x的不等式$\frac{{{a^2}-a+1}}{a-1}≥|2x-1|+|x+1|$對于a∈(1,+∞)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的斜率為$\sqrt{2}$,且右焦點與拋物線${y^2}=4\sqrt{3}x$的焦點重合,則該雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{2}=1$B.$\frac{x^2}{3}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=loga(x-a)+1(a>0,且a≠1)過點(6,3).
(1)求實數(shù)a的值.
(2)設函數(shù)h(x)=ax+1,函數(shù)F(x)=[h(x)+2]2的圖象恒在函數(shù)G(x)=h(2+x)+m+2的圖象上方,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.計算:(0.064)${\;}^{-\frac{1}{3}}$+[(-2)5]${\;}^{-\frac{2}{5}}$-($\frac{1}{16}$)0.75+sin210°+log2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.函數(shù)f(x)=-x3+1在R上是否具有單調(diào)性?如果具有單調(diào)性,它在R上是增函數(shù)還是減函數(shù)?試證明你的結論.

查看答案和解析>>

同步練習冊答案