20.已知函數(shù)f(x)═ax+a-1+xlnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)有極小值-e-2.若k∈Z,且f(x)-k(x-1)>0對任意x∈(1,+∞)恒成立,求k的最大值.

分析 (1)利用導(dǎo)數(shù)運(yùn)算法則求出導(dǎo)函數(shù),令導(dǎo)函數(shù)小于0求出x的范圍與定義域的公共范圍是函數(shù)的單調(diào)遞減區(qū)間,令導(dǎo)函數(shù)大于0求出x的范圍與定義域的公共范圍是函數(shù)的單調(diào)遞增區(qū)間;
(2)先求出a的值,整理后得k<$\frac{f(x)}{x-1}$,問題轉(zhuǎn)化為對任意x∈(1,+∞),k<$\frac{f(x)}{x-1}$恒成立,求正整數(shù)k的值.設(shè)函數(shù)g(x),求其導(dǎo)函數(shù),得到其導(dǎo)函數(shù)的零點(diǎn)x0位于(3,4)內(nèi),且知此零點(diǎn)為函數(shù)h(x)的最小值點(diǎn),經(jīng)求解知h(x0)=x0,從而得到k<x0,則正整數(shù)k的最大值可求.

解答 解:(1)∵f(x)=ax+a-1+xlnx.
∴f′(x)=-a+1+lnx,其定義域?yàn)椋?,+∞)
令f′(x)>0,x>ea-1,令f′(x)<0,0<x<ea-1,
則函數(shù)g(x)的單調(diào)增區(qū)間為(ea-1,+∞),
函數(shù)g(x)的單調(diào)減區(qū)間為(0,ea-1);
(2)由(1)知,f(x)的極小值為f(e-a-1)=-e-a-1=-e-2,得a=1.
當(dāng)x>1時,令g(x)=$\frac{f(x)}{x-1}$=$\frac{x+xlnx}{x-1}$
∴g′(x)=$\frac{x-2-lnx}{(x-1)^{2}}$,
令h(x)=x-2-lnx,
∴h′(x)=1-$\frac{1}{x}$>0,
故y=h(x)在(1,+∞)上是增函數(shù),
由于h(3)=1-ln3<0,h(4)=2-ln4>0,
∴存在x0∈(3,4),使得h(x0)=0.
則x∈(1,x0),h(x)<0,知g(x)為減函數(shù);
x∈(x0,+∞),h′(x)>0,知g(x)為增函數(shù).
∴g(x)min=g(x0)=$\frac{{x}_{0}+{x}_{0}ln{x}_{0}}{{x}_{0}-1}$=x0,
∴k<x0,
又x0∈(3,4),k∈Z,
∴kmax=3.

點(diǎn)評 本題主要考查了函數(shù)的極值和導(dǎo)數(shù)之間的關(guān)系,以及根的存在性定理的應(yīng)用,綜合性較強(qiáng),運(yùn)算量較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,摩天輪的半徑為40m,摩天輪的圓心O距地面為50m,且摩天輪做勻速轉(zhuǎn)動,每3min轉(zhuǎn)-圈,摩天輪上的點(diǎn)P的起始位置在最低點(diǎn)處,若在時刻t(單位:min)時點(diǎn)P距離地面的高度f(t)=Asin(ωt+φ)+h(A>0,ω>0,|φ|≤$\frac{π}{2}$),求2014min時,點(diǎn)P距離地面的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐V-ABC中,VA=VB=VC=4,∠AVB=∠AVC=∠BVC=30°,過點(diǎn)A作截面△AEF,求△AEF周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.P為△ABC所在平面外一點(diǎn),PO⊥面ABC于O.證明:
(1)若PA=PB=PC,則O為△ABC的外心;
(2)若PA⊥BC,PC⊥AB,則PB⊥AC,且O為△ABC的垂心;
(3)若PA,PB,PC兩兩垂直,則O為△ABC的垂心;
(4)若P到△ABC各邊的距離相等(且O在三角形的內(nèi)部),則O為△ABC的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若一個三棱錐的底面是邊長為3的正三角形,高為2$\sqrt{3}$,所有側(cè)棱均相等,則側(cè)棱長為( 。
A.$\sqrt{21}$B.$\sqrt{15}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖1所示,在邊長為12的正方形AA′A′1A1中,點(diǎn)B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A1′、AA1′于點(diǎn)B1、P,作CC1∥AA1,分別交A1A1′、AA1′于點(diǎn)C1、Q,將該正方形沿BB1、CC1折疊,使得$A'{A_1}^′$與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1

(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比;
(3)試判斷直線AQ是否與平面A1C1P平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.1、2、3、4、5、6、7、8、9、10十個數(shù)字,排完隊后把偶數(shù)項拿走,在新的數(shù)列中再把偶數(shù)項拿走…最后剩什么數(shù)字?如果拿走奇數(shù)項呢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各進(jìn)制數(shù)中,最小的是( 。
A.85(9)B.210(6)C.1000(4)D.111 111(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知由于城市的發(fā)展,合肥與南京之間的人員交流頻繁,為了緩解交通壓力,擬修建一條專用鐵路,用一列火車作為交通車,已知該火車每日往返的次數(shù)y是車頭每次拖掛車廂節(jié)數(shù)x的一次函數(shù),若車頭拖掛4節(jié)車廂,則每日往返16次,若車頭每次拖掛7節(jié)車廂,則每日往返10次.
(Ⅰ)求火車每日往返次數(shù)y與拖掛車廂節(jié)數(shù)x的函數(shù)關(guān)系式;
(Ⅱ)求這列火車每天運(yùn)營的車廂的總節(jié)數(shù)S關(guān)于拖掛車廂節(jié)數(shù)x的函數(shù)關(guān)系式;
(Ⅲ)若每節(jié)車廂載客110人,求每次車頭拖掛多少節(jié)車廂時,每天運(yùn)送的旅客人數(shù)最多?并計算出每天最多運(yùn)送的客人人數(shù).

查看答案和解析>>

同步練習(xí)冊答案