精英家教網 > 高中數學 > 題目詳情
10.下列結論:
①一次試驗中不同的基本事件不可能同時發(fā)生;
②設k<3,k≠0,則$\frac{x^2}{3-k}-\frac{y^2}{k}=1$與$\frac{x^2}{5}+\frac{y^2}{2}=1$必有相同的焦點;
③點P(m,3)在圓(x-2)2+(y-1)2=2的外部;
④已知ab<0,bc<0,則直線ax+by-c=0通過第一、三、四象限.
其中正確的序號是②③④.

分析 ①,基本事件的特點是任意兩個基本事件是互斥的;
②,設k<3,k≠0,當0<k<3,則0<3-k<3,$\frac{x^2}{3-k}-\frac{y^2}{k}=1$表實軸為x軸的雙曲線,a2+b2=3=c2
當k<0時,-k>0,且3-k>-k,$\frac{x^2}{3-k}-\frac{y^2}{k}=1$表實軸為x軸焦點在x軸上的橢圓.a2=3-k,b2=-k.
③,(m-2)2+(3-1)2>2,可判定
④把直線的方程化為斜截式,判斷斜率及在y軸上的截距的符號,從而確定直線在坐標系中的位置

解答 解:對于①,∵基本事件的特點是任意兩個基本事件是互斥的,∴一次試驗中,不同的基本事件不可能同時發(fā)生.故正確
對于②,設k<3,k≠0,當0<k<3,則0<3-k<3,$\frac{x^2}{3-k}-\frac{y^2}{k}=1$表實軸為x軸的雙曲線,a2+b2=3=c2
∴二曲線有相同焦點;當k<0時,-k>0,且3-k>-k,$\frac{x^2}{3-k}-\frac{y^2}{k}=1$表實軸為x軸焦點在x軸上的橢圓.a2=3-k,b2=-k.
∴a2-b2=3=c2與已知橢圓有相同焦點.故正確;
對于③,∵(m-2)2+(3-1)2>2,∴點P(m,3)在圓(x-2)2+(y-1)2=2的外部,故正確;
對于④,由ab<0,bc<0得,則直線ax+by-c=0的斜率k>0,直線在y軸上的截距為$\frac{c}<0$,故直線第一、三、四象限,正確.
故答案為:②③④

點評 本題考查了命題真假的判定,涉及了大量的基礎知識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.函數f(x)在[a,b]上有意義,若對任意x1、x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],則稱f(x)在[a,b]上具有性質P,現給出如下命題:
①f(x)=$\frac{1}{x}$在[1,3]上具有性質P;
②若f(x)在區(qū)間[1,3]上具有性質P,則f(x)不可能為一次函數;
③若f(x)在區(qū)間[1,3]上具有性質P,則f(x)在x=2處取得最大值1,則f(x)=1,x∈[1,3];
④若f(x)在區(qū)間[1,3]上具有性質P,則對任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)].
其中真命題的序號為①③④.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.調查某高中1000名學生的肥胖情況,得下表:
  偏瘦正常 肥胖 
 女生(人) 100173 
 男生(人) x177z
已知從這批學生中隨機抽取1名學生,抽到偏瘦男生的概率為0.15
(Ⅰ)求x的值;
(Ⅱ)已知y≥195,z≥195,求肥胖學生中男生不少于女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,短軸端點與橢圓的兩個焦點所構成的三角形面積為1,過點D(0,2)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的方程;
(2)是否存在定點$E(0,\frac{11}{4})$,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值.若存在求出這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知點P(2,2),圓C:x2+y2-8x=0,過點P的動直線l與圓C交于A、B兩點,線段AB的中點為M,O為坐標原點.
(1)求M的軌跡方程;
(2)當|OP|=|OM|時,求直線l方程及△POM的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F2,右頂點為E,過F1于x軸垂直的直線與橢圓C相交,其中一個交點為M(-$\sqrt{3}$,$\frac{1}{2}$).
(I)求橢圓C的方程;
(II)經過點P(1,0)的直線l與橢圓交于A,B兩點.
(i)若直線AE,BE的斜率為k1,k2(k1≠0,k2≠0),證明:k1•k2為定值;
(ii)若O為坐標原點,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若變量x,y滿足條件$\left\{\begin{array}{l}3x-y≤0\\ x-3y+5≥0\\ x≥0\end{array}\right.$則z=x+y的最大值為( 。
A.0B.$\frac{5}{3}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.設a∈R,函數f(x)=x|x-a|+2x.
(1)若a=3,求函數f(x)在區(qū)間[0,4]上的最大值;
(2)若存在a∈(2,4],使得關于x的方程f(x)=t•f(a)有三個不相等的實數解,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.某高中共有2000名學生,其中各年級男生、女生的人數如表所示,已知在全校學生中隨機抽取1人,抽到高二年級女生的概率是0.19,現用分層抽樣的方法在全校抽取64名學生,則在高三年級中應抽取的學生人數是( 。
高一高二高三
女生373mn
男生377370p
A.8B.16C.28D.32

查看答案和解析>>

同步練習冊答案