7.曲線f(x)=x3+$\sqrt{x}$在點(diǎn)(1,2)處的切線方程為(  )
A.4x-y-2=0B.7x-2y-3=0C.3x-y-1=0D.5x-y-3=0

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由點(diǎn)斜式方程,可得所求切線的方程.

解答 解:f(x)=x3+$\sqrt{x}$的導(dǎo)數(shù)為f′(x)=3x2+$\frac{1}{2\sqrt{x}}$,
在點(diǎn)(1,2)處的切線斜率為k=$\frac{7}{2}$,
即有在點(diǎn)(1,2)處的切線方程為y-2=$\frac{7}{2}$(x-1),
即為7x-2y-3=0.
故選:B.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,直線方程的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在空間直角坐標(biāo)系o-xyz中,點(diǎn)A(1,2,2),則|OA|=3,點(diǎn)A到坐標(biāo)平面yOz的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}滿足${a_1}=2,{a_{n+1}}=a_n^2-n{a_n}+1,n∈{N^*}$.
(1)求a2,a3,a4;
(2)由( 1)猜想an的一個通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)U={2,5,7,8},A={2,5,8},B={2,7,8},則∁U(A∪B)等于( 。
A.{2,8}B.C.{5,7,8}D.{2,5,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.等比數(shù)列{an}中,a1+a4=20,a2+a5=40,求它的前6項(xiàng)和s6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,2an+(-1)n•an=2n+(-1)n•2n,則S10=$\frac{2728}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)等差數(shù)列{an}的前n項(xiàng)為Sn,已知a1=-11,a3+a7=-6,當(dāng)Sn取最小值時(shí),n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x-4|+1.
(Ⅰ)解不等式f(x)>|x+1|;
(Ⅱ)設(shè)正數(shù)a,b滿足ab=a+b,若不等式f(m+1)≤a+4b對任意a,b∈(0,+∞)都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$y=\frac{1}{{a{x^2}-ax+1}}$的定義域R,則實(shí)數(shù)a的取值范圍為(  )
A.a≤0或a>4B.0≤a<4C.0<a<4D.0≤a≤4

查看答案和解析>>

同步練習(xí)冊答案