考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件,能推導(dǎo)出{log
2(a
n-1)}是首項(xiàng)為1,公差為1的等差數(shù)列,從而得到log
2(a
n-1)=n,由此能求出數(shù)列{a
n}的通項(xiàng)公式.
(2)根據(jù)數(shù)列{a
n}的通項(xiàng)公式,先求出
,由此利用等比數(shù)列的前n項(xiàng)和公式能求出S
n=
+
+…+
.
解答:
解:(1)∵數(shù)列{log
2(a
n-1)}(n∈N
*)為等差數(shù)列,a
1=3,a
3=9,
∴l(xiāng)og
2(a
1-1)=log
22=1,
log
2(a
3-1)=log
28=3,
∴{log
2(a
n-1)}是首項(xiàng)為1,公差為1的等差數(shù)列,
∴l(xiāng)og
2(a
n-1)=1+n-1=n,
∴
an-1=2n,
∴
an=2n+1.
(2)∵
an=2n+1,
∴
=
=
,
∴S
n=
+
+…+
=
++…+=
=1-
.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,解題時(shí)要熟練掌握等差數(shù)列和等比數(shù)列的性質(zhì),是中檔題.