已知f(x)=
sin(
2
+x)
cos(x-
π
2
)
•sin(x+π)•cos(π-x).
(Ⅰ)當tan(π+x)=-2時,求f(x)的值;
(Ⅱ)指出f(x)的最大值與最小值,并分別寫出使f(x)取得最大值、最小值的自變量x的集合.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:(Ⅰ)f(x)解析式利用誘導(dǎo)公式化簡,約分得到結(jié)果,根據(jù)tan(π+x)=-2,求出tanx的值,即可確定出f(x)的值;
(Ⅱ)利用余弦函數(shù)的值域確定出f(x)的最大值與最小值,并求出取得最大值、最小值時x的集合即可.
解答: 解:(Ⅰ)f(x)=
cosx
sinx
•(-sinx)•(-cosx)=cos2x,
由tan(π+x)=-2,得tanx=-2,
∴f(x)=cos2x=
1
1+tan2x
=
1
5

(Ⅱ)∵f(x)=cos2x,∴f(x)的最大值為1,最小值為0,
當f(x)=1時,cosx=±1,此時x=kπ,k∈Z,
使f(x)取得最大值的自變量x的集合為{x|x=kπ,k∈Z};
當f(x)=0時,cosx=0,此時x=kπ+
π
2
,k∈Z,
使f(x)取得最小值的自變量x的集合為{x|x=kπ+
π
2
,k∈Z}.
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+mx+3的有兩個零點x1,x2(x1≠x2),試問:
(1)m為何值時,該函數(shù)一個零點大于1,一個零點小于1
(2)m為何值時,該函數(shù)兩個零點均滿足x1∈(-3,-1),x2∈(-3,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當a=-
1
4
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當x∈[0,+∞)時,不等式f(x)≤x恒成立,求實數(shù)a的取值范圍.
(3)求證:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)…[1+
2n
(2n-1+1)(2n+1)
]<e 
13
4
(其中n∈N*
e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+b的圖象如圖所示.
(1)求a與b的值;
(2)求x∈[2,4]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,函數(shù)f(x)=m(x2-1)+x-a.
(1)f(x)恒有零點,求實數(shù)a的取值范圍;
(2)當a=0時,f(x)在(2,+∞)上單調(diào),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2lnx-a(x2-1),a∈R,
(1)當a=0時,求f(x)的最小值;
(2)當x≥1時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
2x-1
a+2x+1
是奇函數(shù).
(1)求a的值;
(2)判斷f(x)在R上的單調(diào)性;并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓柱內(nèi)有一個四棱柱,四棱柱的底面是圓柱底面的內(nèi)接正方形.已知圓柱表面積為6π,且底面圓直徑與母線長相等,求四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}是首項為1,公比為-2的等比數(shù)列則|a1|+|a2|+|a3|+…+|a10|=
 

查看答案和解析>>

同步練習冊答案