某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為
2
3
,科目B每次考試成績(jī)合格的概率均為
1
2
.假設(shè)各次考試成績(jī)合格與否均不影響.
(1)求他不需要補(bǔ)考就可獲得證書的概率;
(2)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望Eξ.
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(1)利用相互獨(dú)立事件概率乘法公式能求出他不需要補(bǔ)考就可獲得證書的概率.
(2)由題意知ξ=2,3,4,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望Eξ.
解答: 解:(1)設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2
“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2
∴他不需要補(bǔ)考就可獲得證書的概率為:
P(A1B1)=P(A1)P(B1)=
2
3
×
1
2
=
1
3

(2)由題意知ξ=2,3,4,
P(ξ=2)=
2
3
×
1
2
+
1
3
×
1
3
=
4
9
,
P(ξ=3)=
2
3
×
1
2
×
1
2
+
2
3
×
1
2
×
1
2
+
1
3
×
2
3
×
1
2
=
4
9
,
P(ξ=4)=
1
3
×
2
3
×
1
2
×
1
2
+
1
3
×
2
3
×
1
2
×
1
2
=
1
9

∴ξ的分布列為:
 ξ  2  3  4
 P  
4
9
 
4
9
 
1
9
Eξ=
4
9
+3×
4
9
+4×
1
9
=
8
3
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試討論函數(shù)f(x)=
x
x2+1
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:由直線x=1、x=2、曲線y=
1
x
及x軸所圍圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程x2-(6+i)x+9+ai=0(a∈R)有實(shí)根x=b.
(1)求實(shí)數(shù)a,b的值.
(2)若復(fù)數(shù)z1=
2
1+i
,復(fù)數(shù)z滿足|z-a-bi|=|z1|,求復(fù)數(shù)z的模|z|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明“一個(gè)三角形不能有兩個(gè)直角”有三個(gè)步驟:
①∠A+∠B+∠C=90°+90°+∠C>180°,這與三角形內(nèi)角和為180°矛盾,故假設(shè)錯(cuò)誤.
②所以一個(gè)三角形不能有兩個(gè)直角.
③假設(shè)△ABC中有兩個(gè)直角,不妨設(shè)∠A=90°,∠B=90°.
上述步驟的正確順序?yàn)?div id="eh40l4u" class='quizPutTag' contenteditable='true'> 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是R上的奇函數(shù),函數(shù)y=g(x)是R上的偶函數(shù),且f(x)=g(x+2),當(dāng)0≤x≤2時(shí),g(x)=x-2,則g(10.5)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若將一個(gè)圓錐的側(cè)面沿一條母線剪開,其展開圖是半徑為2cm的半圓,則該圓錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足4x+3y≥24且x-y≤1,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a≥0,b≥0,且a+b=1,則a2+b2的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案