已知集合A={x|ax-3=0},B={x|x2-2x-3=0},且A⊆B,求實(shí)數(shù)a的值.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專(zhuān)題:集合
分析:由x2-2x-3=0,解得x=-1或3.可得B={-1,3}.由A⊆B可得:A=∅,{-1},{3}.分類(lèi)討論解出即可.
解答: 解:由x2-2x-3=0,解得x=-1或3.∴B={-1,3}.
由A⊆B可得:A=∅,{-1},{3}.
①當(dāng)A=∅時(shí),可得a=0.
②當(dāng)A={-1}時(shí),可得-a-3=0,解得a=-3.
③當(dāng)A={3}時(shí),可得3a-3=0,解得a=1.
點(diǎn)評(píng):本題考查了集合之間的關(guān)系、分類(lèi)討論的思想方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=kx+2在R上是增函數(shù),則實(shí)數(shù)k的取值范圍是( 。
A、R
B、(0,+∞)
C、[0,+∞)
D、(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為∠A,∠B,∠C的對(duì)邊,已知a+c=20,C=2A,cosA=
3
4

(1)求
c
a
的值;
(2)求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)市場(chǎng)調(diào)查,某商品在最近的40天內(nèi)的價(jià)格f(t)與時(shí)間t滿(mǎn)足關(guān)系:f(t)=
1
2
t+11,(0≤t<20,t∈N)
41-t(20≤t≤40,t∈N)
.銷(xiāo)售量g(t)與時(shí)間t滿(mǎn)足關(guān)系:g(t)=-
1
3
t+
43
3
(0≤t≤40),其中t∈N.試問(wèn)當(dāng)t取何值時(shí)這種商品的日銷(xiāo)售額(銷(xiāo)售量與價(jià)格之積)最高?并求出最高日銷(xiāo)售額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)為Sn,點(diǎn)(n,
Sn
n
),(n∈N*)均在函數(shù)y=3x-2的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
3
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是首項(xiàng)為1000,公比為
1
10
的等比數(shù)列,數(shù)列{bn}滿(mǎn)足bk=
1
k
((lga1+lga2+…lgak)k∈N*),
(1)求數(shù)列{bn}的前n項(xiàng)和的最大值;
(2)求數(shù)列{|bn|}的前n項(xiàng)和Sn′.
(3)若λn≤Sn′對(duì)任意n∈N*都成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中a4-a2=a2+a3=3
(1)求{an}前n項(xiàng)和Sn
(2)數(shù)列{bn}中,b1=-1,b2=0,且{bn}前n項(xiàng)和Tn滿(mǎn)足Tn+1+Tn-1=2Tn+1(n≥2,n∈N*
(Ⅰ)求數(shù)列{bn}通項(xiàng)公式.
(Ⅱ)設(shè)f(n)=
Sn
8
+
1
2bn
,試確定n(n∈N*)的值,使得f(n)取得最小值并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)探究函數(shù)f(x)=ax+
b
x
(a、b是正常數(shù))在區(qū)間(0,
b
a
)和(
b
a
,+∞)上的單調(diào)性(只需寫(xiě)出結(jié)論,不要求證明).并利用所得結(jié)論,求使方程f(x)-log4m=0有解的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}是首項(xiàng)為19,公差為-2的等差數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)設(shè){bn-an}是以1為首項(xiàng),以3為公比的等比數(shù)列,求{bn}的通項(xiàng)公式及前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案