9.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上存在一點 P滿足$∠{A}{P}F=\frac{π}{2}$,F(xiàn)為橢圓的左焦點,A為橢圓的右頂點,則橢圓的離心率的范圍是(  )
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{2}})$C.$({\frac{1}{2},1})$D.$({\frac{{\sqrt{2}}}{2},1})$

分析 由題意求出以FA為直徑的圓的方程,聯(lián)立圓與橢圓方程,求出點P的坐標,由P得橫坐標滿足-c<xP<a求解.

解答 解:如圖,
A(a,0),F(xiàn)(-c,0),
以FA為直徑的圓的方程為$(x-\frac{a-c}{2})^{2}+{y}^{2}=(\frac{a+c}{2})^{2}$,
整理得:x2-(a-c)x+y2-ac=0.
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\\{{x}^{2}-(a-c)x+{y}^{2}-ac=0}\end{array}\right.$,消去y得:c2x2-a2(a-c)x+a2(b2-ac)=0.
由題意可得:a,xP為方程c2x2-a2(a-c)x+a2(b2-ac)=0的兩根.
由根與系數(shù)的關系可得:${x}_{P}+a=\frac{{a}^{2}(a-c)}{{c}^{2}}$,
∴${x}_{P}=\frac{{a}^{2}(a-c)}{{c}^{2}}-a=\frac{{a}^{3}-{a}^{2}c-a{c}^{2}}{{c}^{2}}$.
由圖可知:-c<xP<a.
即$-c<\frac{{a}^{3}-{a}^{2}c-a{c}^{2}}{{c}^{2}}<a$,
化簡左邊可得(a-c)2>0恒成立;
化簡右邊可得2e2+e-1>0,解得e<-1或e$>\frac{1}{2}$.
又0<e<1,∴$\frac{1}{2}<e<1$.
故選:C.

點評 本題考查了橢圓的標準方程與簡單幾何性質(zhì),圓與圓錐曲線位置關系的應用問題,解題的關鍵是得到關于a,c的等式,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.在空間直角坐標系Oxy中,$\overrightarrow{AB}=-\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}}-3\overrightarrow{{e}_{3}}$($\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}},\overrightarrow{{e}_{3}}$)分別是與x軸、y軸、z軸的正方向同向的單位向量),則點B的坐標為( 。
A.(-$\overrightarrow{{e}_{1}},2\overrightarrow{{e}_{2}},-3\overrightarrow{{e}_{3}}$)B.(-1,2,-3)C.(1,-2,3)D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.化簡:$\frac{1+cosα+cos2α+cos3α}{2co{s}^{2}α+cosα-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如果函數(shù)f(x)=x2+x+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是( 。
A.$-\frac{1}{2}$B.0C.-$\frac{1}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.f(x)=(3-x)6-x(3-x)5的展開式中,含x3項的系數(shù)為-810.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.0∈N,$\sqrt{5}$∉Q,$\sqrt{16}$∈N*,$3\frac{1}{2}$∉ Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=|\overrightarrow b|=\overrightarrow a•\overrightarrow b=2$,向量$\overrightarrow c$滿足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)≤0$,則|$\overrightarrow c$|的最小值為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知拋物線y2=4x的焦點為F,準線與x軸的交點為P,過P任作一條直線與拋物線交于A、B兩點,O為坐標原點.
(1)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值
(2)設C為拋物線上位于第一象限的任意一點,過C作直線l與拋物線相切,求證:F關于直線l的對稱點在拋物線的準線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知關于x的方程ex=ax+b(a>0,b∈R)有相等根,則a+b的最大值為e.

查看答案和解析>>

同步練習冊答案