13.(1)過點(diǎn)A(-5,-4)作一直線l,使它與兩坐標(biāo)軸相交且與兩軸所圍成的三角形面積為5,求其直線方程.(2)已知圓M過兩點(diǎn)A(1,-1),B(-1,1),且圓心M在x+y-2=0上,求圓M的方程.

分析 (1)設(shè)出直線的方程,求出直線與坐標(biāo)軸的交點(diǎn)坐標(biāo),利用三角形的面積公式求出變量,解得直線方程,
(2)設(shè)圓M的方程為:(x-a)2+(y-b)2=r2,利用待定系數(shù)法即可求解.

解答 解:(1)設(shè)直線為y+4=k(x+5),交x軸于點(diǎn)$(\frac{4}{k}-5,0)$,交y軸于點(diǎn)(0,5k-4),
$S=\frac{1}{2}×|{\frac{4}{k}-5}|×|{5k-4}|=5,|{40-\frac{16}{k}-25k}|=10$,
得25k2-30k+16=0,或25k2-50k+16=0,
解得$k=\frac{2}{5}$,或 $k=\frac{8}{5}$∴2x-5y-10=0,或8x-5y+20=0為所求.
(2)設(shè)圓M的方程為:(x-a)2+(y-b)2=r2,(r>0)
根據(jù)題意得$\left\{\begin{array}{l}{a+b-2=0}\\{(1-{a}^{\;})^{2}+(-1-b)^{2}={r}^{2}}\\{(-1-a)^{2}+(1-b)^{2}={r}^{2}}\end{array}\right.$,
解得a=b=1,r=2.
故所求圓M的方程為:(x-1)2+(y-1)2=4.

點(diǎn)評(píng) 本題考查用待定系數(shù)法求直線方程和圓的方程,著重考查了直線的基本量與基本形式、圓的標(biāo)準(zhǔn)方程等知識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=$\frac{\sqrt{3}}{2}$cos2ωx-sinωxcosωx+$\frac{\sqrt{3}}{2}$(ω>0)的圖象與直線y=m(m>0)相切,并且相鄰兩切點(diǎn)的橫坐標(biāo)相差2π.
(Ⅰ)求ω和m的值;
(Ⅱ)△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若角A滿足f(A)=-$\frac{\sqrt{3}}{2}$,且a=4,b+c=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.定義在(0,+∞)上的函數(shù)f(x),對(duì)于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,當(dāng)x>1時(shí),f(x)<0.
(1)求證:1是函數(shù)f(x)的零點(diǎn);
(2)求證:f(x)是(0,+∞)上的減函數(shù);
(3)當(dāng)$f(2)=\frac{1}{2}$時(shí),解不等式f(ax+4)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若雙曲線$\frac{x^2}{64}-\frac{y^2}{36}$=1上一點(diǎn)P到它的左焦點(diǎn)的距離為18,則點(diǎn)P到右焦點(diǎn)的距離為( 。
A.2B.34C.6D.2或34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2cos2x+sin2x+a(a∈R).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{6}$]時(shí),f(x)的最大值為2+$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2px的準(zhǔn)線方程是x=-2,則p的值是( 。
A.$-\frac{1}{8}$B.$\frac{1}{8}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線過點(diǎn)(2,$\sqrt{3}$),則雙曲線的離心率為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x∈R,符號(hào)[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=$\frac{[x]}{x}$(x>0),則給出以下四個(gè)結(jié)論正確的是( 。
A.函數(shù)f(x)的值域?yàn)椋?,1]
B.函數(shù)f(x)沒有零點(diǎn)
C.函數(shù)f(x)是(0,+∞)上的減函數(shù)
D.函數(shù)g(x)=f(x)-a有且僅有3個(gè)零點(diǎn)時(shí)$\frac{3}{4}$<a≤$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算
(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
(2)log25625+lg$\frac{1}{100}$+lne.

查看答案和解析>>

同步練習(xí)冊(cè)答案