精英家教網 > 高中數學 > 題目詳情
如圖,三棱柱ABC-A1B1 C1中,側棱AA1⊥平面ABC,AB=BC=AA1=2,AC=2
2
,E,F分別是A1B,BC的中點.
(Ⅰ)證明:EF∥平面A AlClC;
(Ⅱ)證明:平面A1ABB1⊥平面BEC.
考點:平面與平面垂直的判定,直線與平面平行的判定
專題:空間位置關系與距離
分析:(Ⅰ)連結A1C1,由三角形中位線定理得EF∥A1C1,由此能證明EF∥平面AA1C1C.
(Ⅱ)在△ABC中,由勾股定理得BC⊥AB,線面垂直得AA1⊥BC,由此能證明平面A1ABB1⊥平面BEC.
解答: 證明:(Ⅰ)連結A1C,
∵E,F分別為A1B、BC的中點,
∴EF∥A1C,
∵EF不包含于平面AA1C1C,A1C?平面AA1C1C,
∴EF∥平面AA1C1C.
(Ⅱ)在△ABC中,AB=BC=AA1=2,AC=2
2
,
∴AB2+BC2=AC2,∴BC⊥AB,
∵AA1⊥面ABC,BC?平面ABC,
∴AA1⊥BC,
∵AB∩A1A=A,
∴BC⊥平面AA1B1B,
∵BC?平面BEC,
∴平面A1ABB1⊥平面BEC.
點評:本題考查直線與平面平行的證明,考查平面與平面垂直的證明,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1中,D,E,F分別為AA1,CC1,AB的中點,M為BE的中點.求證:C1D∥平面B1FM.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
ex-e-x
2
,g(x)=
ex+e-x
2
,求證:g(2x)=[g(x)]2+[f(x)]2

查看答案和解析>>

科目:高中數學 來源: 題型:

在四棱錐P-ABCD中,側棱PD⊥底面ABCD,底面ABCD是正方形,若PD=DA,M是PC的中點.
(Ⅰ)證明:PA∥平面BDM
(Ⅱ)若PD=
2
,求點C到平面BDM的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中點.現沿AD把平面PAD折起,使得PA⊥AB(如圖乙所示),E、F分別為BC、AB邊的中點.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角P-ED-F的正切值大小 
(Ⅲ)在PA上找一點G,使得FG∥平面PDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

求證:(1+1)(1+
1
3
)(1+
1
5
)…(1+
1
2n-1
)>
2n+1

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,△ABC內接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,EB=
3

(1)求證:DE⊥面ACD平面;
(2)設AC=x,V(x)表示三棱錐B-ACE的體積,求函數V(x)的解析式及最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax+x2-xlna(a>1)
(Ⅰ)若函數y=|f(x)-b+
1
b
|-3有四個零點,求b的取值范圍;
(Ⅱ)若對于任意的x1,x2∈[-1,1]時,都有|f(x1)-f(x2)|≤e2-2(其中e是自然對數的底數)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3+ax2+bx(a,b∈R)的圖象過點P(1,f(1)),且在點P處的切線方程為8x-y-6=0.
(1)求a,b的值;
(2)求函數y=f(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案