曲線(xiàn)y=sinx在x=
π
2
處的切線(xiàn)方程是( 。
A、y=0B、y=x+1
C、y=xD、y=1
考點(diǎn):利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),得到曲線(xiàn)y=sinx在x=
π
2
處的導(dǎo)數(shù)值為0,即切線(xiàn)斜率為0,再求出曲線(xiàn)y=sinx在x=
π
2
處的點(diǎn)的坐標(biāo),則切線(xiàn)方程可求.
解答: 解:由y=sinx,得y′=cosx,
y|x=
π
2
=cos
π
2
=0

又當(dāng)x=
π
2
時(shí),y=sin
π
2
=1.
∴曲線(xiàn)y=sinx在x=
π
2
處的切線(xiàn)方程是y=1.
故選:D.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)處的切線(xiàn)方程,曲線(xiàn)在某點(diǎn)處的導(dǎo)數(shù)值,即為曲線(xiàn)上以該點(diǎn)為切點(diǎn)的切線(xiàn)的斜率,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從直線(xiàn)l:-4x+3y-6=0上的點(diǎn)P向圓C:(x-2)2+(y+2)2=9引切線(xiàn),則切線(xiàn)長(zhǎng)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
1
ax-1
+
1
2
)•x2+bx+4(a,b為常數(shù),a>1),且f[lg(log81000)]=6,則f[lg(lg2)]的值是( 。
A、2B、6C、-6D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-2,-1),
b
=(λ,1),則
a
b
夾角θ為鈍角時(shí),λ的取值范圍為( 。
A、λ>
1
2
B、λ<-
1
2
C、λ>-
1
2
且λ≠2
D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinωx+
3
cos(π-ωx)
(ω>0)的圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
π
2
,則f(x)的單調(diào)遞增區(qū)間是( 。
A、[kπ-
π
12
,kπ+
12
],k∈Z
B、[2kπ-
π
12
,2kπ+
12
],k∈Z
C、[kπ-
π
6
,kπ+
6
],k∈Z
D、[2kπ-
π
6
,2kπ+
6
],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|a-1<x<2a+1},B={x|0<x<5},若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一中食堂有一個(gè)面食窗口,假設(shè)學(xué)生買(mǎi)飯所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往學(xué)生買(mǎi)飯所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
買(mǎi)飯時(shí)間(分) 1 2 3 4 5
頻率 0.1 0.4 0.3 0.1 0.1
從第一個(gè)學(xué)生開(kāi)始買(mǎi)飯時(shí)計(jì)時(shí).
(理科)(1)估計(jì)第三個(gè)學(xué)生恰好等待4分鐘開(kāi)始買(mǎi)飯的概率;
       (2)X表示至第2分鐘末已買(mǎi)完飯的人數(shù),求X的分布列及數(shù)學(xué)期望.
(文科)(1)求第2分鐘末沒(méi)有人買(mǎi)晚飯的概率;
       (2)估計(jì)第三個(gè)學(xué)生恰好等待4分鐘開(kāi)始買(mǎi)飯的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x∈R,向量
a
=(1,2),
b
=(x,1)
(Ⅰ)當(dāng)
a
+2
b
與2
a
-
b
平行時(shí),求x;
(Ⅱ)當(dāng)
a
+2
b
與2
a
-
b
垂直時(shí),求|
a
+
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)直角△ABC的兩條直角邊長(zhǎng)分別為3,4,若將該三角形繞著斜邊旋轉(zhuǎn)一周所得的幾何體的體積是V,則V=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案