在△ABC中,已知a=2
3
,b=6,A=30°,B為銳角,求B及S△ABC
考點(diǎn):正弦定理
專題:解三角形
分析:由條件利用正弦定理求得sinB的值,可得B的值,利用三角形內(nèi)角和公式求得C=90°,從而求得 S△ABC =
1
2
ab的值.
解答: 解:△ABC中,∵已知a=2
3
,b=6,A=30°,B為銳角,∴由正弦定理可得
a
sinA
=
b
sinB
,
2
3
sin30°
=
6
sinB
,解得sinB=
3
2
,B=60°,∴C=180°-A-B=90°.
∴S△ABC =
1
2
ab=6
3
點(diǎn)評(píng):本題主要考查正弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+3x2-mx+1在[-2,2]上為單調(diào)增函數(shù),則實(shí)數(shù)m的取值范圍為( 。
A、m≤-3B、m≤0
C、m≥-24D、m≥-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sin2x
x2+2
.下列命題:
①f(x)為奇函數(shù);
②函數(shù)f(x)的圖象關(guān)于直線x=
π
2
對(duì)稱;
③當(dāng)x=
π
4
時(shí),函數(shù)f(x)取最大值;
④函數(shù)f(x)的圖象與函數(shù)y=
1
2x
的圖象沒有公共點(diǎn);
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的標(biāo)準(zhǔn)方程為:
x2
a2
+
y2
b2
=1(a>b>0),該橢圓經(jīng)過點(diǎn)P(1,
3
2
),且離心率為
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓:
x2
a2
+
y2
b2
=1(a>b>0)長(zhǎng)軸上任意一點(diǎn)S(s,0),(-a<s<a)作兩條互相垂直的弦AB、CD.若弦AB、CD的中點(diǎn)分別為M、N,證明:直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了幫助小型企業(yè)乙轉(zhuǎn)型發(fā)展,大型國(guó)企甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣批發(fā)店,以120萬元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證所有職工每月工資開支10萬元,再逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息),在國(guó)企甲提供的資料中顯示:①這種消費(fèi)品的進(jìn)價(jià)為每件20元;②該店月銷量Q(千件)與銷售價(jià)格x(元)的關(guān)系如圖所示;③每月需水電房租等各種開支22000元.
(Ⅰ)求該店月銷量Q(千件)與銷售價(jià)格x(元)的函數(shù)關(guān)系式;
(Ⅱ)企業(yè)乙依靠該店,最早可望在多少月后能還清轉(zhuǎn)讓費(fèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的實(shí)系數(shù)一元二次方程2x2-4(m-1)x+m2+1=0.
(1)若方程的兩根為x1、x2,且|x1|+|x2|=2,求m的值;
(2)若方程有虛根z,且z3∈R,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6個(gè)人照像
(1)站成一排,甲、乙相鄰,共有多少種方法?
(2)站成一排,甲不在排頭,乙不在排尾,共有多少種方法?
(3)站成前后兩排,每排3個(gè),前排比后排矮,共有多少種方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著經(jīng)濟(jì)的發(fā)展和人們生活水平的提高,人們對(duì)健康越來越重視,某研究機(jī)構(gòu)從某體檢中心抽查了2000名參加體檢的高中生的體重發(fā)育評(píng)價(jià)數(shù)據(jù),如下表:
偏瘦 正常 肥胖
女生(人) 200 635 y
男生(人) x 615 z
已知從這批學(xué)生中隨機(jī)抽取1人,抽到偏瘦男生的概率為0.15.
(Ⅰ)若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取40人,問應(yīng)在肥胖學(xué)生中抽取多少人?
(Ⅱ)已知y≥120,z≥120,求肥胖學(xué)生中男生不少于女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)求
TM
TN
的最小值;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求|OR|+|OS|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案