4.在正方體中ABCD-A1B1C1D1中,直線AD1與平面B1CD1所成的角的正弦值為$\frac{\sqrt{6}}{3}$.

分析 設(shè)正方體中ABCD-A1B1C1D1的棱長為1,以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AD1與平面B1CD1所成的角的正弦值.

解答 解:設(shè)正方體中ABCD-A1B1C1D1的棱長為1,
以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
A(1,0,0),D1(0,0,1),B1(1,1,1),C(0,1,0),
$\overrightarrow{A{D}_{1}}$=(-1,0,1),$\overrightarrow{C{B}_{1}}$=(1,0,1),$\overrightarrow{C{D}_{1}}$=(0,-1,1),
設(shè)平面B1CD1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{C{D}_{1}}=-y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,-1),
設(shè)直線AD1與平面B1CD1所成的角為θ,
則sinθ=|cos<$\overrightarrow{A{D}_{1}}$,$\overrightarrow{n}$>|=|$\frac{\overrightarrow{A{D}_{1}}•\overrightarrow{n}}{|\overrightarrow{A{D}_{1}}|•|\overrightarrow{n}|}$|=|$\frac{-2}{\sqrt{2}×\sqrt{3}}$|=$\frac{\sqrt{6}}{3}$.
∴線AD1與平面B1CD1所成的角的正弦值為$\frac{\sqrt{6}}{3}$.
故答案為:$\frac{\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題考查線面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求滿足下列條件的圓的方程:
(1)圓心在直線l:x-y+10=0上,過點(diǎn)(-5,0),半徑r=5;
(2)過點(diǎn)P(4,2),Q(-1,3),且圓在兩坐標(biāo)軸上的四個(gè)截距之和等于-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.化簡:
(1)$\frac{cos(α-π)}{sin(π-α)}$•sin(α-$\frac{π}{2}$)cos($\frac{π}{2}$+α);
(2)$\frac{cos(2π-α)sin(π+α)}{sin(\frac{π}{2}+α)tan(3π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知如圖所示的非零向量$\overrightarrow{a}$,$\overrightarrow$,請(qǐng)分別作出滿足下列條件的向量$\overrightarrow{c}$.
(1)$\overrightarrow{c}$=2$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$;
(2)$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-2$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.計(jì)算:$\frac{cos10°+\sqrt{3}sin10°}{\sqrt{1-cos80°}}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.四面體ABCD中,AD⊥平面ABC,AB⊥BC,E,F(xiàn)分別為AC,BD的中點(diǎn),AB=AD=2,∠BAC=60°.
(1)求證:CD⊥AF;
(2)求EF與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在正方體ABCD-A1B1C1D中,直線A1D與平面AB1C1D所成的角為30度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個(gè)函數(shù)中,在(-∞,0)上是增函數(shù)的為( 。
A.f(x)=x2+4B.f(x)=3-$\frac{2}{x}$C.f(x)=x2-5x-6D.f(x)=1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合M={0,1,2,3},P={2,3,4},那么“x∈M或x∈P”是“x∈M∩P”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案