【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

(2) 若函數(shù)有兩個零點 ,且,證明: .

【答案】(1)當時,知上遞減;當時, 上遞減,在上遞增;(2)證明見解析.

【解析】試題分析:

1由函數(shù)的解析式了的, 分類討論有:當時,知上遞減;當時, 上遞減,在上遞增;

2)由(1)知, , ,, ,原問題等價于,結合單調性轉化為即可,而, ,構造函數(shù),令, ,結合導函數(shù)的性質可得,即,則結論得證.

試題解析:

1, ,

時, ,知上是遞減的;

時, ,知上是遞減的,在上遞增的.

2)由(1)知, , ,

依題意,即,

得, , , ,

得, ,即

欲證,只要,

注意到上是遞減的,且,

只要證明即可,

,

所以

, ,

, ,

,知上是遞增的,于是,即,

綜上, .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若函數(shù)在區(qū)間上是單調函數(shù),試求實數(shù)的取值范圍;

(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據按照[0,0.5),[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分15分)如圖,在半徑為的半圓形(O為圓心)鐵皮上截取一塊矩形材料ABCD,其中點A、B在直徑上,點C、D在圓周上,將所截得的矩形鐵皮ABCD卷成一個以AD為母線的圓柱形罐子的側面(不計剪裁和拼接損耗),記圓柱形罐子的體積為

(1)按下列要求建立函數(shù)關系式:

,將表示為的函數(shù);

),將表示為的函數(shù);

(2)請選用(1)問中的一個函數(shù)關系,求圓柱形罐子的最大體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】針對國家提出的延遲退休方案,某機構進行了網上調查,所有參與調查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

支持

保留

不支持

歲以下

歲以上(含歲)

(1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;

(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求歲以下人數(shù)的分布列和期望;

(3)在接受調查的人中,有人給這項活動打出的分數(shù)如下: , , , , , , , , ,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了工廠技術改造后某種型號設備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據:

x(年)

2

3

4

5

6

y(萬元)

1

2.5

3

4

4.5

1)若知道yx呈線性相關關系,請根據上表提供的數(shù)據,用最小二乘法求出y關于x的線性回歸方程;

2)已知該工廠技術改造前該型號設備使用10年的維修費用為9萬元,試根據(1)求出的線性回歸方程,預測該型號設備技術改造后,使用10年的維修費用能否比技術改造前降低?參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), R.

1證明:當時,函數(shù)是減函數(shù);

2根據的不同取值,討論函數(shù)的奇偶性,并說明理由;

3,且時,證明:對任意,存在唯一的R,使得,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為 ,過點的直線與橢圓相交于兩點,且,。

1求橢圓的離心率;

2設點C與點A關于坐標原點對稱,直線上有一點 的外接圓上,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年1月1日,我國全面實行二孩政策,某機構進行了街頭調查,在所有參與調查的青年男女中,持“響應”“猶豫”和“不響應”態(tài)度的人數(shù)如下表所示:

響應

猶豫

不響應

男性青年

500

300

200

女性青年

300

200

300

根據已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為猶豫與否與性別有關?請說明理由.

猶豫

不猶豫

總計

男性青年

女性青年

總計

1800

參考公式:

參考數(shù)據:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案