【題目】已知函數(shù).
(1)當(dāng)時,判斷在定義域上的單調(diào)性;
(2)若對定義域上的任意的,有恒成立,求實數(shù)a的取值范圍;
(3)證明:,.
【答案】(1)因為所以在上單調(diào)遞減,(2),(3)證明見解析.
【解析】
(1)求導(dǎo)后利用基本不等式證明導(dǎo)函數(shù)小于等于0即可.
(2) ,再分、和三種情況分別討論函數(shù)的最大值分析即可.
(3)根據(jù)(2)中的結(jié)論知,對任意都成立, 取再累加求證即可.
(1)當(dāng)時,,故
因為,當(dāng)且僅當(dāng)時取等號.故
所以在上單調(diào)遞減.
(2)∵,
當(dāng)時,則,∴在上單調(diào)遞增, ,
當(dāng)時,令,解得,
當(dāng)時, ,當(dāng)時, ,
∴在上單調(diào)遞增,在上單調(diào)遞減,則時,
,
當(dāng)時, ,在上單調(diào)遞減,則,
∴
(3)當(dāng)時,成立
當(dāng)時,由(2)知,對任意都成立
取,,則
所以
當(dāng)時
所以
所以
所以
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時,求的零點;
(2)若函數(shù)存在極小值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的一個焦點為,四條直線,所圍成的區(qū)域面積為.
(1)求的方程;
(2)設(shè)過的直線與交于不同的兩點,設(shè)弦的中點為,且(為原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線與函數(shù)的圖象在處的切線互相平行.
(1)求的值;
(2)若對恒成立,求實數(shù)的取值范圍;
(3)若數(shù)列的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人利用一根原木制作一件手工作品,該作品由一個球體和一個正四棱柱組成,假定原 木為圓柱體(如圖1),底面半徑為,高為,制作要求如下:首先需將原木切割為兩部分(分別稱為第I圓柱和第II圓柱),要求切面與原木的上下底面平行(不考慮損耗) 然后將第I圓柱切割為一個球體,要求體積最大,將第II圓柱切割為一個正四棱柱,要求正四棱柱的上下底面分別為第II圓柱上下底面圓的內(nèi)接正方形.
(1)當(dāng)時,若第I圓柱和第II圓柱的體積相等,求該手王作品的體積;
(2)對于給定的和,求手工作品體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們期中考試的數(shù)學(xué)分數(shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分數(shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分數(shù)小于110分的學(xué)生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數(shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學(xué)尖子生與性別有關(guān)”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校甲、乙、丙三個興趣小組的學(xué)生人數(shù)分別為36,24,24.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠質(zhì)量的調(diào)查.
(1)應(yīng)從甲、乙、丙三個興趣小組的學(xué)生中分別抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.用表示抽取的3人中睡眠充足的學(xué)生人數(shù),求隨機變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:()的焦點為F,圓C:,點為拋物線上一動點.當(dāng)時,的面積為.
(1)求拋物線E的方程;
(2)若,過點P作圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com