已知全集U={1,2,3,4},集合A={1,2,x2}與B={1,4}是它的子集,
(1)求∁UB;
(2)若A∩B=B,求x的值;
(3)若A∪B=U,求x.
考點:并集及其運算,交集及其運算
專題:集合
分析:(1)根據(jù)全集U及B,求出B的補集即可;
(2)根據(jù)A與B的交集為B,得到B為A的子集,求出x的值即可;
(3)根據(jù)A與B的并集為U,求出x的值即可.
解答: 解:(1)∵全集U={1,2,3,4},B={1,4},
∴∁UB={2,3};
(2)∵A={1,2,x2},B={1,4},且A∩B=B,
∴x2=4,
則x=±2;
(3)∵A={1,2,x2},B={1,4},且A∪B=U,
∴x2=3,
則x=±
3
點評:此題考查了并集及其運算,以及補集及其運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若(1+2x)5+(a+2x)5=a1x+a2x2+a3x3+a4x4+a5x5,則a+a1+a3+a5=( 。
A、0B、-1C、243D、244

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={0,1,2,3,4},B={x|x<2},則A∩B=( 。
A、∅
B、{0,1}
C、{0,1,2}
D、{x|x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線f(x,y)=0上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”,下列方程:
①x2-y2=1
②x2-|x-1|-y=0
③xcosx-y=0
④|x|-
4-y2
+1=0
其中所對應(yīng)的曲線中存在“自公切線”的有( 。
A、①②B、②③C、①④D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某班學生喜愛打籃球是否與性別有關(guān),對該班50名學生進行了問卷調(diào)查,得到如圖的2×2列聯(lián)表.
喜愛打籃球不喜愛打籃球合計
男生20525
女生101525
合計305050
則至少有( 。┑陌盐照J為喜愛打籃球與性別有關(guān).附參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2>k00.100.050.0250.0100.0050.001
k02.7063.8413.0046.6157.78910.828
A、95%B、99%
C、99.5%D、99.9%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某班學生關(guān)注NBA是否與性別有關(guān),對本班48人進行了問卷調(diào)查得到如下的列聯(lián)表:
關(guān)注NBA不關(guān)注NBA合   計
男    生
 
6
 
女    生10
 
 
合    計
 
 
48
已知在全班48人中隨機抽取1人,抽到關(guān)注NBA的學生的概率為
2
3

(1)請將上面列連表補充完整,并判斷是否有95%的把握認為關(guān)注NBA與性別有關(guān)?
(2)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中關(guān)注NBA的女生人數(shù)為X,求X的分布列與數(shù)學期望.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中 n=a+b+c+d
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若圓C經(jīng)過坐標原點和點(6,0),且與直線y=1相切.
(Ⅰ)求圓C的方程;
(Ⅱ)已知點Q(2,-2),從圓C外一點P向該圓引切線PT,T為切點,且|PT|=|PQ|,證明:點P恒在一條定直線上,并求出定直線l的方程;
(Ⅲ)若(Ⅱ)中直線l與x軸的交點為F,點M,N是直線x=6上兩動點,且以M,N為直徑的圓E過點F,判斷圓E是否過除F點外的其它定點?若存在,求出定點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在對人們的休閑方式的一次調(diào)查中,其調(diào)查了120人,其中女性66人,男性55人,女性中有40人主要的休閑方式是看電視,另25人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外35人主要的休閑方式是運動.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(Ⅱ)能夠以多大的把握認為性別與休閑方式有關(guān)系,為什么?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.
P(K2)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c且cosC=
3
4

(1)若B=2C,求
b
c
的值.
(2)若c=
3
,ab=2,求|a-b|的值.

查看答案和解析>>

同步練習冊答案