已知函數(shù)f(x)=3x,且f(a+2)=27,g(x)=2ax-4x的定義域?yàn)閰^(qū)間[-1,1],求
(1)g(x)的解析式;
(2)若g(x)在[-1,1]上值域?yàn)锳,且A⊆[m-4,3m-2],求m的取值范圍.
考點(diǎn):函數(shù)的值域,集合的包含關(guān)系判斷及應(yīng)用,函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:(1)由函數(shù)解析式求出f(a+2),這樣便可建立關(guān)于a的方程,解方程即得a.
(2)將g(x)變成:g(x)=-(2x-
1
2
)2+
1
4
,根據(jù)x的范圍求2x的范圍,這樣根據(jù)2x的取值即可求得g(x)值域A,然后根據(jù)A⊆[m-4,3m-2],即可求出m的取值范圍.
解答: 解:(1)f(a+2)=3a+2=27;
∴a=1;
∴g(x)=2x-4x;
(2)g(x)=2x-22x=-(2x-
1
2
)2+
1
4

∵x∈[-1,1],∴2x[
1
2
,2]
;
2x=
1
2
時(shí)g(x)取最大值
1
4
,2x=2時(shí)g(x)取最小值-2;
∴g(x)在[-1,1]上的值域是A=[-2,
1
4
]

∵A⊆[m-4,3m-2];
-2≥m-4
1≤3m-2
3m-2>m-4
,解得1≤m≤2.
∴m的取值范圍是[1,2].
點(diǎn)評(píng):考查求函數(shù)值,根據(jù)指數(shù)函數(shù)的單調(diào)性求2x的范圍,通過配方求二次函數(shù)值域的方法,子集的概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0).
(1)若a=-2時(shí),函數(shù)h(x)=f(x)-g(x),在其定義域是增函數(shù),求b的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)當(dāng)a=-2,b=4時(shí),求證:對(duì)一切x∈(0,+∞),2x•f(x)≥g(x)-3恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出判斷點(diǎn)A(x,y)與圓x2+y2=1的位置關(guān)系的程序語(yǔ)句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=(log0.25x)2-log0.25x2+5在x∈[2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
3
,離心率為
2
2
,其右焦點(diǎn)為F,點(diǎn)A(0,-b)、B(0,b).
(Ⅰ)求橢圓C1方程及△ABF外接圓的方程;
(Ⅱ)若過點(diǎn)M(2,0)且斜率為k的直線與橢圓C2
x2
a2
+
y2
b2
=
1
3
相交于兩點(diǎn)G、H,設(shè)P為橢圓C2上一點(diǎn),當(dāng)|
PG
-
PH
|<
2
5
3
時(shí),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出判斷輸入數(shù)x,若x是正數(shù),輸出它的平方,若不是,輸出它的相反數(shù)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)計(jì)算n(n∈N*)個(gè)數(shù)2,
3
2
,
4
3
,
5
4
,…,
n+1
n
的和的程序框圖,請(qǐng)完成該圖的程序框:
(Ⅰ)請(qǐng)?jiān)趫D中判斷框內(nèi)(1)處和執(zhí)行框中的(2)處填上合適的語(yǔ)句,使之能完成該題算法功能;
(Ⅱ)根據(jù)程序框圖寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg
x-1
x+1
;
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax3-3x+1對(duì)于x∈[-1,1]總有f(x)≥0成立,則a的取值集合為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案