考點(diǎn):數(shù)列的求和
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由數(shù)列{an}的前n項(xiàng)和Sn=2n2-3n可求得數(shù)列{an}的通項(xiàng)公式,從而可求得數(shù)列{bn}的通項(xiàng)公式,繼而可得答案.
解答:
解:∵S
n=2n
2-3n,
∴當(dāng)n≥2時(shí),
a
n=S
n-S
n-1=2n
2-3n-[2(n-1)
2-3(n-1)]
=4n-5,
當(dāng)n=1時(shí),a
1=S
1=-1也符合上式,
∴a
n=4n-5,
∴a
n+1-a
n=4,
∴數(shù)列{a
n}是以-1為首項(xiàng),4為公差的等差數(shù)列;
∴a
1,a
3,a
5,a
7,組成一個(gè)以-1為首項(xiàng),8為公差的等差數(shù)列,即數(shù)列{b
n}是以-1為首項(xiàng),8為公差的等差數(shù)列,
∴其前n項(xiàng)和T
n=na
1+
×8=-n+4n(n-1)=4n
2-5n.
故答案為:4n
2-5n.
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查等差數(shù)列的通項(xiàng)公式與求和公式的應(yīng)用,屬于中檔題.