在平面直角坐標(biāo)系xOy內(nèi)已知點(diǎn)A(a,0)(a>0),點(diǎn)B(b,d)在函數(shù)f(x)=mx2(0<m<1)的圖象上,∠BOA的平分線與f(x)=mx2的圖象交于點(diǎn)C(1,f(1)),則實(shí)數(shù)b的取值范圍是
 
考點(diǎn):兩直線的夾角與到角問題
專題:計(jì)算題,直線與圓
分析:求出B,C的坐標(biāo),可得直線OB,OC的斜率,利用到角公式,化簡(jiǎn)可得b=
2
1-m2
,利用0<m<1,即可求出實(shí)數(shù)b的取值范圍.
解答: 解:由題意,B(b,mb2),C(1,m),則kOB=mb,kOC=m,
mb-m
1+m2b
=m
,
∴b-1=1+m2b,
∴b=
2
1-m2
,
∵0<m<1,
∴0<1-m2<1,
∴b=
2
1-m2
>2.
∴實(shí)數(shù)b的取值范圍是(2,+∞).
故答案為:(2,+∞).
點(diǎn)評(píng):本題考查兩直線的夾角與到角公式,考查斜率的計(jì)算,考查學(xué)生分析解決問題的能力,確定直線OB,OC的斜率,利用到角公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列已知條件求曲線方程.
(Ⅰ)求與雙曲線
x2
16
-
y2
9
=1共漸近線且過A(2
3
,-3)點(diǎn)的雙曲線方程;
(Ⅱ)求與橢圓
x2
4
+
y2
3
=1有相同離心率且經(jīng)過點(diǎn)(2,-
3
)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=x
1
2
,y=(x-1)2,y=x3中有三個(gè)是增函數(shù);
②若logm3<logn3<0,則0<m<n<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(diǎn)A(1,0)對(duì)稱;
④函數(shù)f(x)=|x|•(|x|+|2-x|)-1有2個(gè)零點(diǎn).
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)①y=(
1
2
x;②y=log2x;③y=
x
中,滿足性質(zhì)f(
x1+x2
2
)>
f(x1)+f(x2)
2
的是函數(shù)
 
(填寫所有滿足要求的函數(shù)序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某縣中學(xué)高二年級(jí)文科班共有學(xué)生350人,其中,男生70人,女生280人,為了調(diào)查男女生數(shù)學(xué)成績(jī)性別差異,現(xiàn)要從350名學(xué)生中抽取50人,則男生應(yīng)抽取
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某四棱錐的三視圖如圖所示,該四棱錐的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是邊長(zhǎng)為3的正方形,若
DE
=2
EC
CF
=2
FB
,則
AE
AF
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
logax(x≥1)
-ax2+(2a+1)x-3(x<1)
(a<0)且a≠1,如果對(duì)任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐A-BCD內(nèi)接于球O,AB=AD=AC=BD=
3
,∠BCD=60°,則球O的表面積為( 。
A、
3
2
π
B、2π
C、3π
D、
9
2
π

查看答案和解析>>

同步練習(xí)冊(cè)答案