甲、乙等五名學(xué)生隨機(jī)選學(xué)一門(mén)A、B、C、D四個(gè)不同的選修科目,每個(gè)科目至少有一名學(xué)生參與.
(1)求甲、乙兩人沒(méi)有選擇同一選修科目的概率;
(2)設(shè)隨機(jī)變量x為這五名學(xué)生中參加A科目的人數(shù),求x的分布列及數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(1)利用古典概率計(jì)算公式結(jié)合排列組合知識(shí)能求出甲、乙兩人沒(méi)有選擇同一選修科目的概率.
(2)由題設(shè)知X=1,2,分別求出P(X=1),P(X=2),由此能求出x的分布列及數(shù)學(xué)期望.
解答: 解:(1)每個(gè)科目至少有一名學(xué)生參與的方案共有
C
2
5
A
4
4
=240種,
甲乙兩人沒(méi)有選擇同一科目的可能方案有
C
1
4
C
1
3
C
1
2
A
3
3
=144種,
∴甲、乙兩人沒(méi)有選擇同一選修科目的概率p=
144
240
=0.6,
(2)由題設(shè)知X=1,2,
P(X=1)=
3
4
,P(X=2)=
1
4
,
∴X的分布列為:
 X 1
 P
3
4
1
4
∴EX=1×
3
4
+2×
1
4
=
5
4
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+(y+2)2=10,求滿足下列條件的圓的切線方程.
(1)與直線L1:x+y-4=0平行;
(2)與直線L2:x-2y+4=0垂直;
(3)過(guò)切點(diǎn):A(4,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(
6
2
1
2
)在橢圓C上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ)若過(guò)定點(diǎn)A(-
2
,0)的直線l1交y軸于點(diǎn)Q,交曲線C于點(diǎn)R,過(guò)坐標(biāo)原點(diǎn)O作直線l2,使得l2∥l1,且l2交曲線C于點(diǎn)S,證明:|AQ|,
2
|OS|,|AR|三個(gè)數(shù)值成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
4
5
(0<α<
π
2
),求cos(2α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知無(wú)窮等差數(shù)列{an},首項(xiàng)a1=3,公差d=-5,依次取出項(xiàng)的序號(hào)被4除余3的項(xiàng)組成數(shù)列{bn}
(1)求b1和b2;
(2)求{bn}的通項(xiàng)公式;
(3){bn}中的第110項(xiàng)是{an}中的第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中點(diǎn).如圖所示.
(1)求證:DC1⊥平面BCD;
(2)求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=cosx+i,z2=1-isinx,x∈R.
(1)求|z1-z2|的最小值;
(2)設(shè)z=z1•z2,記f(x)=Imz(Imz表示復(fù)數(shù)z的虛部).將函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把所得的圖象向右平移
π
2
個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象.試求函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解下列關(guān)于x的方程:
(1)sin4x=sin
π
12
;
(2)sinxcosx+sin2x-2cos2x=0;
(3)3sin2x+8sinxcosx-3cos2x=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足:f(-x)+f(x)=x2,當(dāng)x<0時(shí),f′(x)<x,則不等式f(x)+
1
2
≥f(1-x)+x的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案