如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.當(dāng)CQ=
3
4
時(shí),S與C1D1的交點(diǎn)為R,則C1R=
 
考點(diǎn):棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:由題意作出滿足條件的圖形,由線面位置關(guān)系找出截面可得答案.
解答: 解:當(dāng)CQ=
3
4
時(shí),如圖,
延長DD1至N,使D1N=
1
2
,
連接AN交A1D1于S,連接NQ交C1D1于R,連接SR,
可證AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是棱柱的幾何特征,其中畫出滿足條件的圖象,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,|AB|=2
2
,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知
OR
OF
CR′
CF
,其中0<λ<1.
(Ⅰ)求證:直線ER與GR′的交點(diǎn)M在橢圓Γ:
x2
2
+y2=1上;
(Ⅱ)若點(diǎn)N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F(xiàn)1、F2分別為橢圓Γ的左、右焦點(diǎn),直線NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
.
1-1
13x
.
,則f-1(4)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)P(2,
π
4
)關(guān)于極點(diǎn)的對(duì)稱點(diǎn)的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x-2,x<1
2x,x≥1
,則f(-1)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=
2+
3
2-
3
,y=
2-
3
2+
3
,則x3+y3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
1
2
≤x≤1
y≥-x+1
y≤x+1
,則
y+1
x
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正三棱柱的內(nèi)切球的半徑為R,底面正三角形的邊長為a,則R=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
2x+y≤5
x+y≥3
0≤y≤3
所表示的平面區(qū)域的面積為( 。
A、
9
4
B、2
C、
9
2
D、
27
4

查看答案和解析>>

同步練習(xí)冊(cè)答案