20.已知直線l:y=2x+1及曲線C:y=x2-2x+sinθ.
①求證:直線l與曲線C有兩個(gè)不同的交點(diǎn);
②求線段AB的中點(diǎn)P的坐標(biāo);
③求弦長(zhǎng)|AB|的最值.

分析 (1)聯(lián)立直線方程和拋物線方程,運(yùn)用判別式即可得證;
(2)設(shè)A(x1,y1),B(x2,y2),運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,即可得到;
(3)運(yùn)用弦長(zhǎng)公式,化簡(jiǎn)整理,由正弦函數(shù)的值域即可得到最值.

解答 解:(1)證明:聯(lián)立y=2x+1及曲線C:y=x2-2x+sinθ.
可得x2-4x+sinθ-1=0,
由判別式△=16-4(sinθ-1)=20-4sinθ>0恒成立,
則直線l與曲線C有兩個(gè)不同的交點(diǎn);
(2)設(shè)A(x1,y1),B(x2,y2),
由(1)可得x1+x2=4,
即有$\frac{{x}_{1}+{x}_{2}}{2}$=2,由直線y=2x+1可得中點(diǎn)的縱坐標(biāo)為4+1=5,
即有AB的中點(diǎn)坐標(biāo)為(2,5);
(3)由(1)可得x1+x2=4,x1x2=sinθ-1,
可得|AB|=$\sqrt{1+4}$•$\sqrt{{4}^{2}-4(sinθ-1)}$=$\sqrt{5}$•$\sqrt{20-4sinθ}$,
當(dāng)sinθ=1時(shí),取得最小值4$\sqrt{5}$;當(dāng)sinθ=-1時(shí),取得最大值2$\sqrt{30}$.

點(diǎn)評(píng) 本題考查直線和拋物線的位置關(guān)系,以及中點(diǎn)坐標(biāo)公式,和弦長(zhǎng)公式及最值的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
p:f(x)=m+2x為定義在[-1,2)上的“局部奇函數(shù)”:
q:曲線g(x)=x2+(5m+1)x+1與x軸交于不同的兩點(diǎn);
若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)非空集合A中的元素a滿足:a∈N,且4-a∈A,則滿足條件的集合A的個(gè)數(shù)有(  )
A.6B.7C.8D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=ax2+2(a-3)x+18在區(qū)間(-3,+∞)上遞減,則實(shí)數(shù)α的取值范圍是( 。
A.$[-\frac{3}{2},0]$B.$[-\frac{3}{2},+∞)$C.(-∞,0]D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的右焦點(diǎn)作直線l與橢圓交于A,B兩點(diǎn),弦長(zhǎng)|AB|=$\frac{5}{3}$$\sqrt{5}$,則直線l的斜率為±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,正方體A1B1C1D1-ABCD中,E為AB中點(diǎn),F(xiàn)為CC1的中點(diǎn).
(1)求異面直線A1C與EF所成角的余弦值.
(2)求直線BB1與平面A1C1B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在區(qū)間[-2,3]上任取一個(gè)數(shù)a,則關(guān)于x的方程x2-2ax+a+2=0有根的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S10=100,則a2+a9=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線的兩個(gè)焦點(diǎn)為F1(-$\sqrt{10}$,0)、F2($\sqrt{10}$,0),M是此雙曲線上的一點(diǎn),且滿足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=2,|$\overrightarrow{M{F}_{1}}$|•|$\overrightarrow{M{F}_{2}}$|=0,則該雙曲線的方程是( 。
A.$\frac{{x}^{2}}{9}$-y2=1B.x2-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案