12.在區(qū)間[-2,3]上任取一個(gè)數(shù)a,則關(guān)于x的方程x2-2ax+a+2=0有根的概率為$\frac{2}{5}$.

分析 求出方程x2-2ax+a+2=0有實(shí)根的等價(jià)條件.利用幾何概型的概率公式即可得到結(jié)論

解答 解:若方程x2-2ax+a+2=0有實(shí)根,
則判別式△=4a2-4(a+2)≥0,
即a2-a-2≥0,解得a≥2或a≤-1,
∵-2≤a≤3,
∴-2≤a≤-1或,2≤a≤3,
則方程x2-2ax+a+2有實(shí)根的概率P=$\frac{-1(-2)+3-2}{3-(-2)}$=$\frac{2}{5}$.
故答案為:$\frac{2}{5}$

點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,求出方程有根的等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,正方體ABCD-A1B1C1D1中,則直線D1C與平面ABC所成角的大小等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={1,2},B={x|x2+ax+b=0},C={x|cx+1=0},若A=B,則a+b=-1,若C⊆A,則常數(shù)c組成的集合為{-1,$\frac{1}{2}$,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l:y=2x+1及曲線C:y=x2-2x+sinθ.
①求證:直線l與曲線C有兩個(gè)不同的交點(diǎn);
②求線段AB的中點(diǎn)P的坐標(biāo);
③求弦長|AB|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.方程2x2+2x-1=0的兩根為x1和x2,則|x1-x2|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,如果輸入的t=0.1,則輸出的n=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,且經(jīng)過點(diǎn)(0,1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;  
(2)過點(diǎn)D(1,0)且不過點(diǎn)E(2,1)的直線與橢圓C交于A,B兩點(diǎn),直線AE與直線x=3交于點(diǎn)M,試判斷直線BM與直線DE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|-2≤x≤2},N={x|x-1>0},則M∩N=( 。
A.{x|1<x≤2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{c^2}{{{x^2}+ax+a}}$,其中a為實(shí)數(shù).
(Ⅰ)若f(x)的定義域?yàn)镽,求a的取值范圍;
(Ⅱ)當(dāng)f(x)的定義域?yàn)镽時(shí),求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案