5.設(shè)α是第三象限角.則$\frac{\sqrt{1+ta{n}^{2}α}}{cosα}$+tanα•$\sqrt{\frac{1}{co{s}^{2}α}-1}$等于( 。
A.-1B.1C.±1D.0

分析 利用三角函數(shù)的基本關(guān)系式以及三角函數(shù)的定義解答.

解答 解:因?yàn)棣潦堑谌笙藿牵詂osα<0,tanα>0,
所以原式=$\frac{1}{cosα|cosα|}+tanα|tanα|$=$-\frac{1}{co{s}^{2}α}+\frac{si{n}^{2}α}{co{s}^{2}α}$=$\frac{-co{s}^{2}α}{co{s}^{2}α}$=-1;
故選A.

點(diǎn)評 本題考查了三角函數(shù)的基本關(guān)系式的應(yīng)用;特別注意各象限的三角函數(shù)符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=-$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+2,求:
(1)f(x)的最小正周期及對稱軸方程;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)-m+1=0在x∈[0,$\frac{π}{2}$]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若實(shí)數(shù)x,y滿足x2+y2≤4,求以下代數(shù)式的最值.
(1)$\frac{y-2}{x+3}$,(2)|3x-2y+1|;(3)x2+2x+y2-y+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=4x5+3x3+2x+1,則f(log23)+f(lo${g}_{\frac{1}{2}}3$)=( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如果函數(shù)f(x)與g(x)的定義域相同,且f(x)是奇函數(shù),g(x)是偶函數(shù),請證明F(x)=f(x)g(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(m2-m+1)${x}^{\frac{{m}^{2}-2m-1}{2}}$是冪函數(shù),且圖象不經(jīng)過原點(diǎn).
(1)求f(4)的值;
(2)解方程f(|x|)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ln(ax)(a≠0,a∈R),g(x)=$\frac{x-1}{x}$.
(Ⅰ)當(dāng)a=1時,記φ(x)=f(x)-$\frac{x+1}{x-1}$,求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)(x≥1)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ) 已知對于0<λ<1,恒有$\frac{{1+{k^λ}}}{2}≤{(\frac{1+k}{2})^λ}$(k∈N*)成立;當(dāng)a=1且0<λ<1時,對任意n∈N*,試比較$\sum_{k=1}^n{\frac{1}{{1+{k^λ}}}}$與f[(1+n)λ2n(1-λ)]的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+2ax+2
(1)若方程f(x)=0有兩不相等的正根,求a的取值范圍;
(2)求f(x)在x∈[-5,5]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)(1-3i)2的虛部為(  )
A.-3iB.-6C.-6iD.3i

查看答案和解析>>

同步練習(xí)冊答案