已知tanα=
1
2
,求
1+2sin(π-α)cos(-2π-α)
sin2(-α)-sin2(
2
-α)
的值.
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:利用誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系式化簡表達式為正切函數(shù)的形式,代入已知條件求解即可.
解答: 解:
1+2sin(π-α)cos(-2π-α)
sin2(-α)-sin2(
2
-α)

=
1+2sinαcos(2π+α)
sin2α-sin2(
π
2
-α)

=
1+2sinαcosα
sin2α-cos2α

=
sin2α+2sinαcosα+cos2α
(sinα-cosα)(sinα+cosα)

=
sinα+cosα
sinα-cosα

=
1+tanα
tanα-1

=
1+
1
2
1
2
-1

=-3.
點評:本題考查誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(I)求cos2A的值;
(Ⅱ)求證:tanA=2tanB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-1|+ax.
(Ⅰ)當(dāng)a=2時,解關(guān)于x的不等式f(x)≥|x-2|;
(Ⅱ)若f(x)≥x-
1
2
在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個扇形周長為4,面積為1,則其中心角等于
 
(弧度)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從5本不同的英文書中選3本,4本不同的中文書中選2本,將它們排成一排,且中文書不能放在兩邊,共有
 
種不同排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
2
(tanx+sinx)-
1
2
|tanx-sinx|-k≥0在x∈[
4
,
5
4
π]恒成立,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是首項為1的正數(shù)項數(shù)列,且(n+1)an+12-nan2+an+1an=0(n∈N*),經(jīng)歸納猜想可得這個數(shù)列的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“若a2>b2,則|a|>|b|”時,假設(shè)的內(nèi)容應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
(1)函數(shù)y=f(x)在區(qū)間(3,5)內(nèi)單調(diào)遞增;
(2)函數(shù)y=f(x)在區(qū)間(-
1
2
,3)內(nèi)單調(diào)遞減;
(3)函數(shù)y=f(x)在區(qū)間(-2,2)內(nèi)單調(diào)遞增;
(4)當(dāng)x=-
1
2
時,函數(shù)y=f(x)有極大值;
(5)當(dāng)x=2時,函數(shù)y=f(x)有極大值;
則上述判斷中正確的是
 

查看答案和解析>>

同步練習(xí)冊答案