15.在數(shù)列{an}中,a1=1,$\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}=\frac{2}{{{a_n}{a_{n+1}}}}(n∈{N^*})$.
(Ⅰ)求證數(shù)列{an}為等差數(shù)列,并求它的通項(xiàng)公式;
(Ⅱ)${b_n}=\frac{1}{a_n^2}$,求證:${b_1}+{b_2}+…+{b_n}<\frac{5}{4}$.

分析 (I)$\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}=\frac{2}{{{a_n}{a_{n+1}}}}(n∈{N^*})$,化為an+1-an=2,即可證明;
(II)當(dāng)n≥2時(shí),${b_n}=\frac{1}{a_n^2}$=$\frac{1}{(2n-1)^{2}}$<$\frac{1}{4n(n-1)}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$.利用“裂項(xiàng)求和”與“放縮法”即可證明.

解答 證明:(I)∵$\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}=\frac{2}{{{a_n}{a_{n+1}}}}(n∈{N^*})$,
化為an+1-an=2,
∴數(shù)列{an}為等差數(shù)列,首項(xiàng)為1,公差為2.
∴an=1+2(n-1)=2n-1.
(II)當(dāng)n≥2時(shí),
${b_n}=\frac{1}{a_n^2}$=$\frac{1}{(2n-1)^{2}}$<$\frac{1}{4n(n-1)}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$.
∴b1+b2+…+bn$<1+\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})]$
=1+$\frac{1}{4}(1-\frac{1}{n})$$<\frac{5}{4}$.
當(dāng)n=1時(shí)也成立,
∴${b_1}+{b_2}+…+{b_n}<\frac{5}{4}$.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”、等差數(shù)列的通項(xiàng)公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)y=cosx+ax在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平行六面體ABCD-A1B1C1D1,底面ABCD是邊長為1的正方形,AA1=2,∠A1AB=∠A1AD=120°,則異面直線AC1與A1D所成角的余弦值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\frac{{\sqrt{14}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.
(1)求橢圓C的方程;
(2)設(shè)A(-4,0),過點(diǎn)R(3,0)作與x軸不重合的直線l交橢圓C于P,Q兩點(diǎn),連接AP,AQ分別交直線x=$\frac{16}{3}$于M,N兩點(diǎn),若直線MR、NR的斜率分別為k1、k2,試問:k1k2是否為定值?若是,求出該定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2$,$|{\overrightarrow a}|$與$|{\overrightarrow b}|$夾角為30°,則$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列有關(guān)命題的敘述,
①若p∨q為真命題,則p∧q為真命題;
②“m>$\frac{1}{2}$”是$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2m-1}$=1為橢圓的充分必要條件;
③“若x+y=0,則是x,y互為相反數(shù)”的逆命題為真命題;
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x=2≠0”.
其中錯(cuò)誤的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{5}{2-i}$=( 。
A.i-2B.i+2C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在四面體PABC中,PA、PB、PC兩兩垂直,且均相等,E是AB的中點(diǎn),則異面直線AC與PE所成的角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在長方體ABCD-A1B1C1D1中,DA=2,DC=3,DD1=4,M,N,E,F(xiàn)分別是棱A1D1,A1B1、,D1C1,B1C1的中點(diǎn).
求證:平面AMN∥平面EFBD.

查看答案和解析>>

同步練習(xí)冊(cè)答案