5.若函數(shù)y=cosx+ax在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

分析 由題意可得可得y′=-sinx+a≥0在[-$\frac{π}{2}$,$\frac{π}{2}$]上恒成立,即 a≥sinx在[-$\frac{π}{2}$,$\frac{π}{2}$]上恒成立,由此求得a的范圍.

解答 解:由函數(shù)y=cosx+ax在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù),可得y′=-sinx+a≥0在[-$\frac{π}{2}$,$\frac{π}{2}$]上恒成立,
即 a≥sinx在[-$\frac{π}{2}$,$\frac{π}{2}$]上恒成立,故a≥1,
故選:D.

點(diǎn)評(píng) 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的恒成立問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知l,m,n為兩兩垂直的三條異面直線,過(guò)l作平面α與m垂直,則n與α的關(guān)系是( 。
A.n∥αB.n∥α或n?αC.n?α或n與α不平行D.n?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,已知平行四邊形ABCD中,BC=2,BD⊥CD,四邊形ADEF為正方形,平面ADEF⊥平面ABCD,G,H分別是DF,BE的中點(diǎn),記CD=x,V(x)表示四棱錐F-ABCD的體積.
(1)求V(x)的表達(dá)式;
(2)求V(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)f(sinx)=cos2x,則f($\frac{1}{4}$)=( 。
A.$-\frac{7}{8}$B.$\frac{7}{8}$C.$-\frac{1}{8}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知命題p:“方程x2-ax+a+3=0有解”,q:“$\frac{1}{4^x}+\frac{1}{2^x}$-a≥0在[0,+∞)上恒成立”,若p或q為真命題,p且q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某市欲為市轄各學(xué)校招聘教師,從報(bào)名者中篩選1000名參加筆試,按筆試成績(jī)擇優(yōu)取200名面試,再?gòu)拿嬖噷?duì)象中聘用100名教師.
(1)隨機(jī)調(diào)查了50名筆試者的成績(jī)?nèi)缦卤硭荆?br />
分?jǐn)?shù)段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)
人數(shù)23152073
請(qǐng)你預(yù)測(cè)面試的分?jǐn)?shù)線大約是多少?
(2)該市某學(xué)校從聘用的四男a、b、c、d和二女e、f中選派兩人參加某項(xiàng)培訓(xùn),則選派結(jié)果為一男一女的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如果M={x|x=a2+1,a∈N*},P={y|y=b2-2b+2,b∈N*},則M和P的關(guān)系為M?P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知雙曲線$\frac{x^2}{2}-\frac{y^2}{m}=1$的一條準(zhǔn)線與拋物線y2=4x的準(zhǔn)線重合,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在數(shù)列{an}中,a1=1,$\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}=\frac{2}{{{a_n}{a_{n+1}}}}(n∈{N^*})$.
(Ⅰ)求證數(shù)列{an}為等差數(shù)列,并求它的通項(xiàng)公式;
(Ⅱ)${b_n}=\frac{1}{a_n^2}$,求證:${b_1}+{b_2}+…+{b_n}<\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案