在調(diào)查男女乘客是否暈機(jī)的情況中,已知男乘客暈機(jī)為28人,不會暈機(jī)的也是28人,而女乘客暈機(jī)為28人,不會暈機(jī)的為56人.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;
(2)試判斷是否暈機(jī)與性別有關(guān)?
(參考數(shù)據(jù):K2>2.706時,有90%的把握判定變量A,B有關(guān)聯(lián);K2>3.841時,有95%的把握判定變量A,B有關(guān)聯(lián);K2>6.635時,有99%的把握判定變量A,B有關(guān)聯(lián).參考公式:K2
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)根據(jù)條件中所給的數(shù)據(jù),寫出列聯(lián)表,注意各個部分的數(shù)據(jù)不要寫錯位置,做出合計要填在表中.
(2)根據(jù)列聯(lián)表和求觀測值的公式,把數(shù)據(jù)代入公式,求出觀測值,把觀測值同臨界值進(jìn)行比較,得到在犯錯誤的概率不超過0.05的前提下我們認(rèn)為是“暈機(jī)與性別”有關(guān).
解答: 解:(1)2×2列聯(lián)表如下:
暈機(jī) 不暈機(jī) 合計
男乘客 28 28 56
女乘客 28 56 84
合計 56 84 140
(2)假設(shè)是否暈機(jī)與性別無關(guān),
則K2=
140×(28×56-28×28)2
56×84×56×84
=
35
9
≈3.888>3.841,
因?yàn)镻(k2≥3.841)≈0.05,
所以有95%的把握認(rèn)為是否暈機(jī)與性別有關(guān).
點(diǎn)評:本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,解題的關(guān)鍵是利用列聯(lián)表正確的計算出觀測值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N*).
(1)求證:數(shù)列{
1
an
+(-1)n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)bn=an•sin
(2n-17)π
2
,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:對任意n∈N*,有Tn
4
7
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高二一班共有35名學(xué)生,其中男生20名,女生15名,今從中選出3名同學(xué)參加活動.
(1)其中某一女生必須在內(nèi),不同的取法有多少種?
(2)至少有兩名女生在內(nèi),不同的取法有多少種?
(3)至多有兩名女生在內(nèi)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,
m
=(b,2a-c),
n
=(cosB,cosC),且
m
n

(1)求角B的大小;
(2)設(shè)f(x)=cos(ωx-
B
2
)+sinωx(ω>0),且f(x)的最小正周期為π,求f(x)在[0,
π
2
]上的最大值和最小值,及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
x2
(1)討論f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
1
e
,e]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=8,定點(diǎn)P(4,0),問:過P點(diǎn)的直線的傾斜角在什么范圍內(nèi)取值時,這條直線與已知圓(1)相切(2)相交(3)相離,并寫出過點(diǎn)P的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(a+b)=f(a)•f(b),(a,b∈N),且f(1)=2,則
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+
f(10)
f(9)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex-x(e為自然數(shù)的底數(shù))在區(qū)間[-1,1]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實(shí)數(shù)x,不等式|x+1|+|x-2|>a恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案