已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=0,且Sn≥-5對(duì)一切n∈N*恒成立,則此等差數(shù)列{an}公差d的取值范圍是( 。
A、(-∞,
2
5
]
B、[0,
2
5
]
C、[-
5
2
,0)
D、[0,
5
2
]
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等差數(shù)列{an}的首項(xiàng),由S10=0得到首項(xiàng)和公差的關(guān)系,把等差數(shù)列的前n項(xiàng)和用含有公差d和n的代數(shù)式表示,再由關(guān)于n的函數(shù)對(duì)一切n∈N*恒成立列式求得d的取值范圍.
解答: 解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,
由S10=0,得10a1+
10×(10-1)d
2
=10a1+45d=0

a1=-
9
2
d

由Sn≥-5,得:
na1+
n(n-1)d
2
=-
9d
2
n+
d
2
n2-
d
2
n
=
d
2
n2-5dn≥-5

由Sn≥-5對(duì)一切n∈N*恒成立,
得dn2-10dn+10≥0對(duì)一切n∈N*恒成立,
∴d≥0且△≤0,
即100d2-40d≤0.
解得0≤d≤
2
5

∴公差d的取值范圍是[0,
2
5
].
故選:B.
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和,考查了數(shù)列的函數(shù)特性,訓(xùn)練了利用二次不等式恒成立的條件求解參數(shù)的范圍,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=sin(sin2014°),b=sin(cos2014°),c=cos(sin2014°),d=cos(cos2014°),則a、b、c、d從小到大的順序是
 
(用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是(  )
A、(0,-1,0)
B、(0,1,0)
C、(1,0,1)
D、(0,1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(α+
π
3
)=
4
5
,α∈(-
π
2
,0),則tan(2α+
3
)=( 。
A、-
24
7
B、
24
7
C、±
24
7
D、
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a是實(shí)數(shù),若復(fù)數(shù)
a
i
+
1-i
2
(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線x+y=0上,則a的值為( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lg(2-x)的定義域是( 。
A、(-∞,2)
B、(-∞,2]
C、(2,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題錯(cuò)誤的是( 。
A、命題“若平面外兩點(diǎn)到平面的距離相等,則過(guò)兩點(diǎn)的直線平行于該平面;”的逆否命題為假命題
B、“x=1”是“x2-3x+2=0”的充分不必要條件
C、已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3
D、若p∧q為假命題,則p與q中至少有一個(gè)為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列2,5,11,20,x,47,…中的x等于( 。
A、28B、27C、33D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

新一輪課程改革強(qiáng)調(diào)綜合素質(zhì)考評(píng),假定某學(xué)校某班級(jí)50名學(xué)生任何一人在綜合素質(zhì)考評(píng)的人一方面獲“A”等級(jí)的概率都是
1
3
(注:綜合素質(zhì)考評(píng)分以下六個(gè)方面:A交流與合作、B、公民道德修養(yǎng)、C、學(xué)習(xí)態(tài)度與能力、D、實(shí)踐與創(chuàng)新、E、運(yùn)動(dòng)與健康、F、審美與表現(xiàn)).
(Ⅰ)某學(xué)生在六個(gè)方面至少獲3個(gè)“A”等級(jí)考評(píng)的概率;
(Ⅱ)若學(xué)生在六個(gè)方面獲不少于3個(gè)“A”等級(jí)就被認(rèn)定為綜合考評(píng)“優(yōu)”,求該班綜合考評(píng)獲“優(yōu)”的均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案