8.已知無窮等比數(shù)列{an}的所有項的和為3,則a1的取值范圍為{x|0<x<6,且x≠3}.

分析 由題意可得:$\frac{{a}_{1}}{1-q}$=3,0<|q|<1,解出即可得出.

解答 解:由題意可得:$\frac{{a}_{1}}{1-q}$=3,0<|q|<1,
∴a1=3(1-q)∈(0,6),且a1≠3.
∴a1的取值范圍為{x|0<x<6,且x≠3}.
故答案為:{x|0<x<6,且x≠3}.

點(diǎn)評 本題考查了等比數(shù)列的通項公式及其前n項和公式性質(zhì)、極限的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.定義在[-1,1]上的函數(shù)y=f(x)是增函數(shù),且是奇函數(shù),若f(a-1)+f(4a-5)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線2x-y-3=0關(guān)于x軸對稱的直線方程為2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.我校為進(jìn)行“陽光運(yùn)動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S(平方米)的矩形AMPN健身場地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設(shè)矩形AMPN健身場地每平方米的造價為$\frac{37k}{{\sqrt{S}}}$元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價為$\frac{12k}{{\sqrt{S}}}$元(k為正常數(shù)).
(1)試用x表示S,并求S的取值范圍;
(2)求總造價T關(guān)于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價T最低(不要求求出最低造價).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解不等式:$\frac{4}{x-1}$≤x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,則實數(shù)a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.自然狀態(tài)下的魚類是一種可再生資源,為了持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對魚群總量的影響.用xn表示某魚群在第n年年初的總量且x1>0.不考慮其他因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與$x_n^2$成正比,這些比例系數(shù)依次為正常數(shù)a,b,c
(1)求xn+1與xn的關(guān)系式
(2)若每年年初魚群的總量保持不變,求x1,a,b,c所應(yīng)滿足的條件
(3)設(shè)a=2,c=1,為保證對任意x1∈(0,2),都有xn>0,則捕撈強(qiáng)度b的最大允許值是多少?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)x,y滿足x2+y2≤1,則
(1)(x+2)2+(y-2)2的最小值是9-4$\sqrt{2}$;
(2)|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在如圖所示的正方體中.
(1)指出哪些棱與BB1是異面直線,哪些棱與對角線BD1是異面直線.
(2)分別求出直線DD1與BC1、A1D1及DC1所成的角度.

查看答案和解析>>

同步練習(xí)冊答案