已知tan(
π
6
-α)=
1
3
,則cos(
3
+2α)的值為
 
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:設(shè)t=
π
6
-α,即α=
π
6
-t,tant=
1
3
,將α代入原式,利用誘導(dǎo)公式化簡(jiǎn),再利用萬(wàn)能公式化簡(jiǎn),將tant的值代入計(jì)算即可求出值.
解答: 解:設(shè)t=
π
6
-α,即α=
π
6
-t,tant=
1
3
,
則cos(
3
+2α)=cos(π-2t)=-cos2t=-
1-tan2t
1+tan2t
=-
4
5

故答案為:-
4
5
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列的遞推公式為a1=1,an+1=2an-2n(n∈N*),則求這個(gè)數(shù)列的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(x+
π
6
)cosx的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:對(duì)于各項(xiàng)均為整數(shù)的數(shù)列{an},如果ai+i(i=1,2,3,…)為完全平方數(shù),則稱(chēng)數(shù)列{an}具有“P性質(zhì)”;不論數(shù)列{an}是否具有“P性質(zhì)”,如果存在數(shù)列{bn}與{an}不是同一數(shù)列,且{bn}滿(mǎn)足下面兩個(gè)條件:
(1)b1,b2,b3,…,bn是a1,a2,a3,…,an的一個(gè)排列;
(2)數(shù)列{bn}具有“P性質(zhì)”,則稱(chēng)數(shù)列{an}具有“變換P性質(zhì)”.給出下面三個(gè)數(shù)列:
①數(shù)列{an}的前n項(xiàng)和Sn=
n
3
(n2-1);
②數(shù)列{bn}:1,2,3,4,5;
③數(shù)列{cn}:1,2,3,4,5,6.
具有“P性質(zhì)”的為
 
;具有“變換P性質(zhì)”的為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
lim
n→∞
1+2+4+…+2n
C
1
n
+
C
2
n
+…+
C
n
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把七進(jìn)制數(shù)305(7)化為五進(jìn)制數(shù),則305(7)=
 
(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是公差為2的等差數(shù)列,Sn是{an}的前n項(xiàng)和,則
lim
n→∞
Sn
nan
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)展開(kāi)式(x-
1
x
6中的常數(shù)項(xiàng)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x|x>0},集合M={x|2x-x2>0},則∁UM=( 。
A、{x|x≥2}
B、{x|x>2}
C、{x|x≤0或x≥2}
D、{x|0<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案