已知等差數(shù)列{an}滿足a2=0,a6+a8=-10求數(shù)列{an}的通項公式及前n項和Sn
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用等差數(shù)列的通項公式求出首項和公差,由此能求出數(shù)列{an}的通項公式及前n項和Sn
解答: 解:∵等差數(shù)列{an}滿足a2=0,a6+a8=-10,
a1+d=0
2a1+12d=-10
,解得a1=1,d=-1,
∴數(shù)列{an}的通項公式an=1-(n-1)×(-1)=2-n,
前n項和Sn=
n[1+(2-n)]
2
=
3n-n2
2
點評:本題考查等差數(shù)列的通項公式和前n項和的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

方程
C
x
28
=
C
3x-8
28
的解集為( 。
A、{4}B、{9}
C、∅D、{4,9}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2014的值為( 。
A、4023B、4025
C、4027D、4029

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
1
3x-1
+
1
a
是奇函數(shù),則a的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=xlnx,g(x)=-x2+ax-1,對一切x∈(0,+∞),3f(x)≥g(x)恒成立,則實數(shù)a的取值范圍是( 。
A、(-∞,
13
+3ln
13
-3
2
B、(-∞,4]
C、(-∞,6]
D、[5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1-2cos2
ωx
2
,1),
b
=(-1,cos(ωx+
π
3
)),ω>0,點A、B為函數(shù)f(x)=
a
b
的相鄰兩個零點,|AB|=π.
(Ⅰ) 求ω的值;
(Ⅱ) 若f(x)=
3
3
,x∈(0,
π
2
),求sinx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,E是PC的中點.
(1)證明:BE∥平面PAD;
(2)求直線AE與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
),n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設bn=(-1)n-1anan-1,求{bn}的前n向和Tn
(3)當n為偶數(shù)時,Tn≤m-3n恒成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
1
7
,cos(α-β)=
13
14
,且0<β<α<
π
2
,且0<β<α<
π
2

求:(1)tan2α的值;
(2)β的大。

查看答案和解析>>

同步練習冊答案