8.如圖,在正方體中,E、F為所在棱的中點(diǎn),求證:D1、E、F、B四點(diǎn)共面.

分析 要證:E,B,F(xiàn),D1四點(diǎn)共面,只需證BF∥D1E即可.

解答 證明:在BB1取點(diǎn)M,使得BM=AE,

∵ABCD-A1B1C1D1是正方體
∴ME∥AB且ME=AB
∴ME∥C1D1且ME=C1D1
∴四邊形C1D1EM是平行四邊形
∴D1E∥C1M
又∵C1M∥FB且C1M=FB
∴D1E∥FB且D1E=FB
∴四邊形EBFD1是平行四邊形
∴E,B,F(xiàn),D1四點(diǎn)共面

點(diǎn)評 此題考查學(xué)生的空間想象能力和邏輯推理能力,考查對四點(diǎn)共面的理解與掌握

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在正方形ABCD的邊長為2,$\overrightarrow{DE}=2\overrightarrow{EC}$,$\overrightarrow{DF}=\frac{1}{2}(\overrightarrow{DC}+\overrightarrow{DB})$,則$\overrightarrow{BE}•\overrightarrow{DF}$的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{10}{3}$D.$-\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)F1、F2分別是雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn),過F2的直線交雙曲線于P,Q兩點(diǎn),若|PQ|=10,則△PQF1的周長為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1的左頂點(diǎn)為A、上頂點(diǎn)為B,光線通過點(diǎn)C(-1,0)射到線段AB(端點(diǎn)除外)上的點(diǎn)T,經(jīng)線段AB反射,其反射光線與橢圓交于點(diǎn)M.若∠CTM為鈍角,則T點(diǎn)的橫坐標(biāo)m的范圍為(-3,$\frac{-3-\sqrt{3}}{2}$)∪($\frac{\sqrt{3}-3}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.自駕游從A地到B地有甲乙兩條線路,甲線路是A-C-D-B,乙線路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵車路段.假設(shè)這三條路段堵車與否相互獨(dú)立.這三條路段的堵車概率及平均堵車時(shí)間如表所示:
堵車時(shí)間(小時(shí))頻數(shù)
[0,1]8
(1,2]6
(2,3]38
(3,4]24
(4,5]24
經(jīng)調(diào)查發(fā)現(xiàn)堵車概率x在($\frac{2}{3}$,1)上變化,y在(0,$\frac{1}{2}$)上變化.在不堵車的狀況下,走甲路線需汽油費(fèi)500元,走乙線路需汽油費(fèi)545元.而每堵車1小時(shí),需多花汽油費(fèi)20元.路政局為了估計(jì)CD段平均堵車時(shí)間,調(diào)查了100名走甲線路的司機(jī),得到如表數(shù)據(jù).
路段         CDEFGH
堵車概率                                                                    xy$\frac{1}{4}$
平均堵車時(shí)間(小時(shí))                                                             a21
(Ⅰ)求CD段平均堵車時(shí)間a的值,(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值做代表)
(Ⅱ)若走甲、乙路線所花汽油費(fèi)的期望值相等,且x=$\frac{11}{12}$,求y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓與雙曲線有公共的左右焦點(diǎn)F1,F(xiàn)2,在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,設(shè)橢圓,雙曲線的離心率分別為e1,e2,則e2-e1的取值范圍是($\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{{e}^{x}+a}{{e}^{x}+b}$是定義在上R的奇函數(shù),則b的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,正方形ABCD所在平面與正方形ABEF所在的平面所成的二面角為θ,AD與BF夾角的余弦值為$\frac{\sqrt{2}}{4}$,試求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓O:x2+y2=4,直線l:x+y-4=0,A為直線l上一點(diǎn),若圓O上存在兩點(diǎn)B、C,使得∠BAC=60°,則點(diǎn)A的橫坐標(biāo)的取值范圍是[0,4].

查看答案和解析>>

同步練習(xí)冊答案