已知函數(shù)f(x)=3sin(
1
2
x-
π
3
),x∈R

(1)用“五點(diǎn)法”畫出函數(shù)在長度為一個周期的閉區(qū)間上的簡圖;
(2)說明函數(shù)f(x)的圖象可由y=sinx,x∈R的圖象經(jīng)過怎樣的變化得到?
考點(diǎn):五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)“五點(diǎn)法”即可畫出函數(shù)在長度為一個周期的閉區(qū)間上的簡圖;
(2)根據(jù)三角函數(shù)圖象之間的關(guān)系,即可得到結(jié)論.
解答: 解(1):①列表:
1
2
x-
π
3
0
π
2
π
2
x
3
3
3
11π
3
14π
3
y 0 3 0 -3 0
②在坐標(biāo)系中描出以上五點(diǎn)
③用光滑的曲線連接這五點(diǎn),得所要求作的函數(shù)圖象.
(2)①把y=sinx,x∈R的圖象向右平移
π
3
個單位,所得圖象
對應(yīng)的析式為y=sin(x-
π
3
)

②再把y=sin(x-
π
3
)
的圖象縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍,所得圖象
對應(yīng)的解析式為y=sin(
1
2
x-
π
3
)

③再把y=sin(
1
2
x-
π
3
)
的圖象橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的3倍,所得圖象的
解析式為f(x)=3sin(
1
2
x-
π
3
),x∈R
點(diǎn)評:本題主要考查三角函數(shù)的圖象和性質(zhì),要求熟練掌握五點(diǎn)法作圖以及函數(shù)圖象之間的變化關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,△ABC是邊長為2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(1)證明:AE∥平面BCD;
(2)證明:平面BDE⊥平面CDE;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊方程分別為AB:4x-3y+10=0,BC:y-2=0,CA:3x-4y-5=0.求:
(Ⅰ)AB邊上的高所在直線的方程;
(Ⅱ)∠BAC的內(nèi)角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,使得|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
下面我們來考慮兩個函數(shù):f(x)=4-x+p•2-x+1,g(x)=
1-q•2x
1+q•2x

(Ⅰ)當(dāng)p=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(Ⅱ)若q∈(
1
2
,
2
2
]
,函數(shù)g(x)在[0,1]上的上界是H(q),求H(q)的取值范圍;
(Ⅲ)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項(xiàng)都是正數(shù),前n項(xiàng)和為Sn,且對任意n∈N+,都有a
 
3
1
+a
 
3
2
+a
 
3
3
+…+a
 
3
n
=S
 
2
n

(1)求證:a
 
2
n
=2Sn-an;     
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(1-x)-loga(1+x),其中a>0,且a≠1.
(1)判斷f(x)的奇偶性;
(2)若f(
1
2
)=1
,解不等式f(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為迎接2014年“馬”年的到來,某校舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有三個選項(xiàng),問題B有四個選項(xiàng),但都只有一個選項(xiàng)是正確的,正確回答問題A可獲獎金a元,正確回答問題B可獲獎金b元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止.假設(shè)一個參與者在回答問題前,對這兩個問題都很陌生.
(Ⅰ)如果參與者先回答問題A,求其恰好獲得獎金a元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,若不等式組 
3x-y+2≥0
x-2y-2≤0
ax-y+1≥0
所表示的平面區(qū)域是一個銳角三角形,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y+3=0的傾斜角是( 。
A、
π
6
B、
6
C、
π
4
D、
3

查看答案和解析>>

同步練習(xí)冊答案