設(shè)z=3x+y,其中(x,y)為
x+y≤1
x+2y≥1
2x+y≥1
表示區(qū)域內(nèi)的點(diǎn),則z的取值范圍為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,即可求出z的最大值.
解答: 解:不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=3x+y得y=-3x+z,
平移直線y=-3x+z,則由圖象可知當(dāng)直線y=-3x+z經(jīng)過(guò)點(diǎn)B(1,0)時(shí)直線y=-3x+z的截距最大,此時(shí)z最大,z=3+0=3,
當(dāng)直線y=-3x+z經(jīng)過(guò)點(diǎn)A(0,1)時(shí)直線y=-3x+z的截距最小,此時(shí)z最小,z=0+1=1,
故1≤z≤3,
故答案為:1≤z≤3
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊在直線y=
3
x上,求α的正弦,余弦的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(-
1
2
+
3
2
i)3的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:A+B=
π
4
,且A≠
π
2
+kπ,B
π
2
+kπ,k∈Z,則(1+tanA)(1+tanB)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一枚硬幣連擲5次,已知每次拋擲后正面向上與反面向上的概率均為
1
2
,如果出現(xiàn)k次正面向上的概率等于出現(xiàn)k+1次正面向上的概率,那么k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x>0時(shí),函數(shù)y=(a2-8)x的值恒大于1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=4x的焦點(diǎn)作一條直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)M的橫坐標(biāo)為2,則|AB|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x|4-x|-m有3個(gè)零點(diǎn)分別為x1,x2,x3,則x1+x2+x3的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有三個(gè)不同的信箱,今有四封不同的信欲投其中,則不同的投法有多少種( 。
A、24B、64C、81D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案