已知函數(shù)f(x)=ex+ax,g(x)=exlnx(e=2.71828…).
(Ⅰ)設(shè)曲線y=f(x)在x=1處的切線為l,到點(diǎn)(1,0)的距離為
2
2
,求a的值;
(Ⅱ)若對(duì)于任意實(shí)數(shù)x≥0,f(x)>0恒成立,試確定a的取值范圍;
(Ⅲ)當(dāng)a=-1時(shí),是否存在實(shí)數(shù)x0∈[1,e],使曲線C:y=g(x)-f(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x的值;若不存在,請說明理由.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)切點(diǎn)坐標(biāo)(1,e+a),切線斜率k=f′(1)=e+a,由點(diǎn)斜式可得切線方程,再由點(diǎn)到直線的距離公式可得a的方程,解出即可;
(Ⅱ)易判斷x=0時(shí)不等式恒成立;當(dāng)x>0時(shí)分離出參數(shù)a,化為函數(shù)的最值即可,利用導(dǎo)數(shù)可求得函數(shù)的最值,注意兩種情況下參數(shù)的范圍要求交集;
(Ⅲ)曲線C的方程為y=exlnx-ex+x,令M(x)=exlnx-ex+x,問題即為a=-1時(shí),是否存在實(shí)數(shù)x0∈[1,e],M′(x)=0有實(shí)數(shù)解,構(gòu)造函數(shù)利用導(dǎo)數(shù)可判斷M′(x)>0,于是得到結(jié)論;
解答: 解:(Ⅰ)f′(x)=ex+a,f(1)=e+a.
y=f(x)在x=1處的切線斜率為f′(1)=e+a,
∴切線l的方程為y-(e+a)=(e+a)(x-1),即(e+a)x-y=0.
又點(diǎn)(1,0)到切線l的距離為
2
2
,∴
|(e+a)•1+(-1)•0+0|
(e+a)2+(-1)2
=
2
2

解之得,a=-e+1或a=-e-1.
(Ⅱ)∵x≥0,f(x)=ex+ax>0恒成立,
若x=0,f(0)=1>0恒成立;
若x>0,f(x)=ex+ax>0恒成立,即a>-
ex
x
,在x>0上恒成立,
設(shè)Q(x)=-
ex
x
,則Q′(x)=-
xex-ex
x2
=
(1-x)•ex
x2

當(dāng)x∈(0,1)時(shí),Q′(x)>0,則Q(x)在(0,1)上單調(diào)遞增;
當(dāng)x∈(1,+∞0時(shí),Q′(x)<0,則Q(x)在(1,+∞)上單調(diào)遞減;
∴當(dāng)x=1時(shí),Q(x)取得最大值,Q(1)=-e,
∴a的取值范圍為(-e,+∞).
(Ⅲ)依題意,曲線C的方程為y=exlnx-ex+x,
令M(x)=exlnx-ex+x,
∴M′(x)=
ex
x
+exlnx-ex
+1=(
1
x
+lnx-1
)•ex+1,
設(shè)h(x)=
1
x
+lnx-1
,則h′(x)=-
1
x2
+
1
x
=
x-1
x2
,
當(dāng)x∈[1,e]時(shí),h′(x)≥0,故h(x)在[1,e]上單調(diào)增函數(shù),
因此h(x)在[1,e]上的最小值為h(1)=0,即h(x)=
1
x
+lnx-1
≥h(1)=0,
又x0∈[1,e]時(shí),ex>0,
1
x
+lnx-1
≥0,
∴M′(x)=(
1
x
+lnx-1
)•ex+1>0,
曲線y=exlnx-ex+x在點(diǎn)x=x0處的切線與y軸垂直等價(jià)于方程M′(x)=0有實(shí)數(shù)解,但是M′(x)>0,M′(x)=0沒有實(shí)數(shù)解,
故不存在實(shí)數(shù)x0∈[1,e],使曲線C:y=g(x)-f(x)在點(diǎn)x=x0處的切線與y軸垂直.
點(diǎn)評(píng):該題考查導(dǎo)數(shù)的幾何意義、函數(shù)恒成立、函數(shù)的零點(diǎn)等知識(shí),考查學(xué)生運(yùn)算求解能力、推理論證能力與問題的轉(zhuǎn)化能力,綜合性較強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊落在直線5x-12y=0上,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={a,b,c},N={-3,0,3},若從M到N的映射f滿足:f(a)+f(b)=f(c),求這樣的映射f的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司在甲、乙兩地銷售同一種品牌的汽車,利潤(單位:萬元)分別為L1=5.06x-0.15x2和L2=2x,其中x為銷售量(單位:輛).若該公司在這兩地共銷售15輛車,求該公司能獲得的最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1
lnx

(Ⅰ)求證:當(dāng)x>1時(shí),f(x)>1;
(Ⅱ)令an+1=f(an),a1=
e
,求證:2nlnan≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,a1=
9
2
,且對(duì)任意的n>1,n∈N*均滿足Sn+Sn-1=2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若f(x)=x•log3x,b1=3,bn=f(an)(n≥2),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式(組)
(1)
3x2+x-2≥0
4x2-15x+9>0

(2)x2-(2+a)x+2a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log4|an|,求數(shù)列{
1
bnbn+2
}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=4,前n項(xiàng)和為Sn,Sn+1-3Sn-2n-4=0
(Ⅰ)求證:{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=
1
5
(an+1)+n(n∈N*)求數(shù)列{bn}前n項(xiàng)的和Tn

查看答案和解析>>

同步練習(xí)冊答案