焦點(diǎn)為F的拋物線y2=4x上有三點(diǎn)A、B、C滿足:①△ABC的重心是F;②|FA|、|FB|、|FC|成等差數(shù)列.則直線AC的方程是
 
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:利用△ABC的重心是F,可得y1+y2+y3=0,x1+x2+x3=3,|FA|、|FB|、|FC|成等差數(shù)列,可求B的坐標(biāo),進(jìn)而可得直線AC的斜率,從而可得直線AC的方程.
解答: 解:設(shè)A、B、C三點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),(x3,y3),
∵拋物線y2=4x的焦點(diǎn)F的坐標(biāo)為F(1,0),△ABC的重心是F
1
3
(x1+x2+x3)=1,y1+y2+y3=0,可得x1+x2+x3=3,
∵|FA|、|FB|、|FC|成等差數(shù)列,
∴2|FB|=|FA|+|FC|,
∴2(x2+1)=x1+1+x3+1,
∴2x2=x1+x3,
∴x2=1,
∴y2=±2,
∴y1+y3=±2,
∴kAC=
y3-y1
x3-x1
=
4
y1+y3
=±2,
設(shè)直線AC的方程是y=2x+b,代入y2=4x可得4x2+(4b-4)x+b2=0,
∴x1+x3=-b+1=2
∴b=-1,
同理直線AC的方程是y=-2x+b,代入y2=4x,可得b=-1,
∴直線AC的方程是2x±y-1=0.
故答案為:2x±y-1=0.
點(diǎn)評(píng):本題考查拋物線方程,考查拋物線的定義,考查學(xué)生的計(jì)算能力,確定直線AC的斜率是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|-2≤x≤5},B={x|m+1
1
2
x≤2m-1
},B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線L1的傾斜角為α,α∈(0,
π
2
),L1繞其上一點(diǎn)P沿逆時(shí)針?lè)较蛐D(zhuǎn)α角得到直線L2,L2的縱截距為-2,L2繞P點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)
π
2
-α角得到直線L3:x+2y-1=0,則L1的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a2=2,an+2-an=2,n∈N*,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4=11,S12=9,則S20=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+tx-t(t<0),集合A={x|f(x)<0},若A∩Z(Z為整數(shù)集)中恰有一個(gè)元素,則t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2-2x,x≤0
ln(x+1),x>0
,則方程f(x)=1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在⊙O上半圓中,AC=a,CB=b,CD⊥AB,請(qǐng)你利用CD≤OD寫出一個(gè)含有a,b的不等式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“α=
π
4
”是“cos2α=0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不是充分條件也不是必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案