已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,對任意n∈N*,總有an,Sn,an2成等差數(shù)列
(l)求數(shù)列{an}的通項公式;
(2)令bn=
an
2n
,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出2an=an+an2-an-1-an-12,從而得到{an}是公差為1的等差數(shù)列,由此能求出an=n.
(2)由bn=
an
2n
=
n
2n
,利用錯位相減法能求出數(shù)列{bn}的前n項和Tn
解答: 解:(1)∵各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,
對任意n∈N*,總有an,Sn,an2成等差數(shù)列,
2Sn=an+an2,2Sn-1=an-1+an-12
兩式相減,得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1),
又an,an-1為正數(shù),∴an-an-1=1,n≥2,
∴{an}是公差為1的等差數(shù)列,
當n=1時,2S1=a1+a12,得a1=1,或a1=0(舍),
∴an=n.
(2)bn=
an
2n
=
n
2n
,
Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
,①
1
2
Tn
=
1
22
+
2
23
+
3
24
+…+
n
2n+1
,②
①-②,得:
1
2
Tn
=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1

=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1

=1-
1
2n
-
n
2n+1
,
∴Tn=2-
n+2
2n
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認真審題,注意錯位相減法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點P(x,3)是角θ終邊上一點,且cosθ=-
4
5
,則x的值為( 。
A、5B、-5C、4D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
9
+
y2
4
=1的離心率是(  )
A、
2
3
B、
3
2
C、
5
3
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式|x-2|-|2x-1|≤|a|+|a-1|.
(1)當a=1時,求不等式的解集;             
(2)若不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實數(shù)k的值.
(2)證明:對任意的實數(shù)b,函數(shù)y=f(x)圖象與直線y=-
3
2
x+b最多只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明:首項為a1,公比q≠1的等比數(shù)列{an}的前n項和為:Sn=
a1(1-qn)
1-q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,△ABC的外接圓半徑R=
3
,且滿足
cosC
cosB
=
2sinA-sinC
sinB

(1)求角B和邊b的大;
(2)若a+c=2
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐的側(cè)面展開圖是圓心角為120°的扇形,且圓錐的全面積為
3
cm2,求:
(1)圓錐的底面半徑和母線長;
(2)圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓A:(x+2
2
2+y2=64,動圓M過點B(2
2
,0),且和圓A相切,動圓的圓心M的軌跡為曲線C
(1)求C的方程;
(2)點P是曲線C上橫坐標大于2的動點,點D,E在y軸上,圓(x-1)2+y2=1內(nèi)切于△PDE,求△PDE面積的最小值.

查看答案和解析>>

同步練習冊答案