已知f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實數(shù)k的值.
(2)證明:對任意的實數(shù)b,函數(shù)y=f(x)圖象與直線y=-
3
2
x+b最多只有一個公共點.
考點:函數(shù)的零點,函數(shù)圖象的作法,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:(1)根據(jù)偶函數(shù)可知f(x)=f(-x),取x=-1代入即可求出k的值;
(2)由(1)中結(jié)論,可以得到函數(shù)的解析式,構(gòu)造函數(shù)y=log4(4x+1)-x,分析出函數(shù)的單調(diào)性及值域,根據(jù)函數(shù)零點的判定方法,我們易確定b取不同值時,函數(shù)零點個數(shù),進而得到答案.
解答: 解:(1)∵f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
∴f(-x)=f(x)
即log4(4-x+1)-kx=log4(4x+1)+kx
∵log4(4-x+1)=log4
4x+1
4x
)=log4(4x+1)-log44x=log4(4x+1)-x,
∴l(xiāng)og4(4x+1)-(k+1)x=log4(4x+1)+kx,
即2k+1=0
k=-
1
2

證明:(2)由(1)得f(x)=log4(4x+1)-
1
2
x
令y=log4(4x+1)-x
由于y=log4(4x+1)-x為減函數(shù),且恒為正
故當b>0時,y=log4(4x+1)+
3
2
x-b有唯一的零點,此時函數(shù)y=f(x)的圖象與直線有一個交點,
當b≤0時,y=log4(4x+1)+
3
2
x-b沒有零點,此時函數(shù)y=f(x)的圖象與直線沒有交點
對任意的實數(shù)b,函數(shù)y=f(x)圖象與直線y=-
3
2
x+b最多只有一個公共點.
點評:本題主要考查了偶函數(shù)的性質(zhì),以及對數(shù)函數(shù)圖象與性質(zhì)的綜合應用,同時考查了分類討論的思想,由于綜合考查了多個函數(shù)的難點,屬于難題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l,m,平面α,β,且l⊥α,m?β,則( 。
A、若平面α不平行于平面β,則l不可能垂直于m
B、若平面α平行于平面β,則l不可能垂直于m
C、若平面α不垂直于平面β,則l不可能平行于m
D、若平面α垂直于平面β,則l不可能平行于m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}是等差數(shù)列,a1+a2=2,a3+a4=4,則a5+a6=( 。
A、16B、12C、8D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,cosB=-
5
13
,cosC=
4
5

(1)求cosA的值;
(2)若|BC|=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式:x2-(m+2)x+2m<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,對任意n∈N*,總有an,Sn,an2成等差數(shù)列
(l)求數(shù)列{an}的通項公式;
(2)令bn=
an
2n
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,下頂點為A,離心率e=
1
2
,若直線l:x-
3
y-3=0過點A.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點F2作斜率為k的直線l′與橢圓C交于M、N兩點,在x軸上是否存在點p(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是
π
2
,若將f(x)的圖象先向右平移
π
6
個單位,再向上平移2個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若對任意x∈[0,
π
3
],不等式f2(x)-(2+m)f(x)+2+m≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P在圓x2+y2=2上移動,PQ⊥x軸于Q,動點M滿足
QP
=
2QM
,
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若動直線x-
2
y+m=0與曲線C交于A,B兩點,在第一象限內(nèi)曲線C上是否存在一點M使MA與MB的斜率互為相反數(shù)?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案