是否存在常數(shù)a、b,使等式:12+22+32+…+n2=an(n+b)(2n+1)對一切正整數(shù)n成立?并證明你的結論.
考點:數(shù)學歸納法
專題:證明題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:先令n=1,n=2,構造三個方程求出a,b,再用用數(shù)學歸納法證明成立,證明時先證:(1)當n=1時成立.(2)再假設n=k(k≥1)時,成立,遞推到n=k+1時,成立即可.
解答: 解:分別將n=1,2代人,得
1=3a(1+b)
5=10a(2+b)
,
∴a=
1
6
,b=1…(2分)
下面用數(shù)學歸納法證明
(1)當n=1時,由上可知等式成立…(3分)
(2)假設n=k時結論成立,即12+22+32+…+k2=
k(k+1)(2k+1)
6
,
那么n=k+1時,12+22+32+…+k2+(k+1)2=
k(k+1)(2k+1)
6
+(k+1)2
=
(k+1)(k+2)(2k+3)
6
=
(k+1)[(k+1)+1][2(k+1)+1]
6
,
這就是說,n=k+1時,結論也成立…(11分)
由(1)(2)可知,存在常數(shù)a=
1
6
,b=1使等式:12+22+32+…+n2=an(n+b)(2n+1)對一切正整數(shù)n成立…(12分)
點評:本題主要考查研究存在性問題和數(shù)學歸納法,對存在性問題先假設存在,再證明是否符合條件,數(shù)學歸納法的關鍵是遞推環(huán)節(jié),要符合假設的模型才能成立.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在空間四面體SABC中,SC⊥AB,AC⊥SC,且△ABC是銳角三角形,那么必有( 。
A、平面SAC⊥平面SCB
B、平面SAB⊥平面ABC
C、平面SCB⊥平面ABC
D、平面SAC⊥平面SAB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3+x2+(m2-1)x
,(x∈R),其中m>0
(Ⅰ)當m=2時,求曲線y=f(x)在點(3,f(3))處的切線的方程;
(Ⅱ)若f(x)在(
3
2
,+∞
)上存在單調遞增區(qū)間,求m的取值范圍
(Ⅲ)已知函數(shù)f(x)有三個互不相同的零點0,x1,x2且x1<x2,若對任意的x∈[x1,x2],f(x)>f(1)恒成立.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB⊥BC,側棱SA⊥底面ABCD,點O為側棱SC的中點,且SA=AB=BC=2,AD=1.
(Ⅰ)求證:OD⊥SB;
(Ⅱ)求面SCD與面SAB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,|AB|=3,|BC|=2,
e1
=
AB
|
AB
|
,
e2
=
AD
|
AD
|
,
AB
AD
的夾角為
π
3

(1)若
AC
=x
e1
+y
e2
,求x、y的值;
(2)求
AC
BD
的值;
(3)求
AC
BD
的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司擬資助三位大學生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學生的創(chuàng)業(yè)方案進行評審,假設評審結果為“支持”與“不支持”的概率分別為
2
3
1
3
,若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助,若只獲得一個“支持”,則給予5萬元的資助,若未獲得“支持”,則不予資助,求:
(1)該公司的資助總額為零的概率
(2)該公司的資助總額超過15萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知|
a
|+2|
b
|=3,
a
b
的夾角為60°,
c
=5
a
+3
b
d
=3
a
+k
b
,當實數(shù)k為何值時
c
d

(2)不共線向量
a
b
的夾角為小于120°的角,且|
a
|=1,|
b
|=2,已知向量
c
=
a
+2
b
,求|
c
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x2+3x(x≥0)交于點O,A,與直線x=t(0<t<1)與曲線C1,C2交于B,D
(1)寫出四邊形ABOD的面積S與t的函數(shù)關系S=f(t)
(2)討論f(t)的單調性,并求f(t)的最大值
(3)對任意t∈(0,1),x∈(
π
4
,π],f(t)>cos x+
3
sin x+a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從0,1,2,3,4,5,6這7個數(shù)字中選出4個不同的數(shù)字組成四位數(shù).
(1)一共可以組成多少個四位數(shù);
(2)一共可以組成多少個比1300大的四位數(shù).

查看答案和解析>>

同步練習冊答案