求下列函數(shù)的值域:
(1)y=5 x2+2x+3;
(2)y=(
1
2
 -x2-2x+3
考點(diǎn):函數(shù)的值域
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:將指數(shù)換元,利用復(fù)合函數(shù)的性質(zhì)
解答: 解:(1)令t=x2+2x+3,則函數(shù)變?yōu)閥=2t,且t=(x+1)2+2≥2,所以
2t≥22=4,即y≥4,因此,函數(shù)的值域是{y|y≥4}
(2)令t=-x2-2x+3=-(x+1)2+4,則函數(shù)化為y=(
1
2
)t
,且t≤4,所以
(
1
2
)t
1
16
,因此,函數(shù)的值域是{y|y≥
1
16
}
點(diǎn)評(píng):本題考查指數(shù)函數(shù)與一元二次函數(shù)的復(fù)合函數(shù)性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M(x,y)是區(qū)域
x-y+3≤0
x+y-1≤0
x≤2
內(nèi)的任意一點(diǎn),則z=2x-y的最大值為( 。
A、-1B、0C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)M(0,-2),N(3,1),且圓心C在直線(xiàn)x+2y+1=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)問(wèn)是否存在滿(mǎn)足以下兩個(gè)條件的直線(xiàn)l:①斜率為1;②直線(xiàn)被圓C截得的弦為AB,以AB為直徑的圓C1過(guò)原點(diǎn).若存在這樣的直線(xiàn),請(qǐng)求出其方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,CD是⊙O的切線(xiàn),C為切點(diǎn),連接AC,過(guò)點(diǎn)A作AD⊥CD于點(diǎn)D,交⊙O于點(diǎn)E.
(Ⅰ)證明:∠AOC=2∠ACD;
(Ⅱ)證明:AB•CD=AC•CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的一個(gè)焦點(diǎn)為(0,-
3
),且橢圓經(jīng)過(guò)點(diǎn)(
1
2
,
3
).開(kāi)口向上的拋物線(xiàn)C2的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為2,C1的中心和C2的頂點(diǎn)均為坐標(biāo)原點(diǎn)O.
(1)求C1和C2的標(biāo)準(zhǔn)方程;
(2)A、B為拋物線(xiàn)C2上的點(diǎn),分別過(guò)A、B作拋物線(xiàn)C2的切線(xiàn),兩條切線(xiàn)交于點(diǎn)Q,若點(diǎn)Q恰好在其準(zhǔn)線(xiàn)上.
    ①直線(xiàn)AB是否過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由;
    ②指出點(diǎn)Q與以線(xiàn)段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=x+
1-x2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,過(guò)橢圓上一點(diǎn)P(2,1)作傾斜角互補(bǔ)的兩條直線(xiàn),分別交橢圓于不同兩點(diǎn)A、B.
(Ⅰ)求證:直線(xiàn)AB的斜率為一定值;
(Ⅱ)若直線(xiàn)AB與y軸的交點(diǎn)Q滿(mǎn)足:3
QA
+
QB
=
0
,求直線(xiàn)AB的方程;
(Ⅲ)若在橢圓上存在關(guān)于直線(xiàn)AB對(duì)稱(chēng)的兩點(diǎn),求直線(xiàn)AB在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax+3在區(qū)間[-1,1]上有最小值,記作g(a).
(1)求g(a)的函數(shù)表達(dá)式;
(2)作出g(a)的函數(shù)圖象并指出它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是二次函數(shù),且在x=1處取得最值,又f(
2
)<f(π)
,則函數(shù)f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案