長方體ABCD-A1B1C1D1中,異面直線AB,A1D1所成的角等于
 
考點(diǎn):異面直線及其所成的角
專題:計算題,空間角
分析:欲求異面直線所成角,只需平移異面直線中的一條,是它們成為相交直線,則相交直線所成角即為異面直線所成角,再求出該角即可.
解答: 解:∵在長方體A1B1C1D1-ABCD中,A1D1∥AD,∴AB與AD所成角∠DAB即為異面直線AB與A1D1所成的角.
∵∠DAB=90°,∴異面直線AB與A1D1所成的角等于90°.
故答案為:90°.
點(diǎn)評:本題主要考查異面直線所成角的求法,關(guān)鍵是把異面直線所成角轉(zhuǎn)化為平面角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列各函數(shù)的導(dǎo)數(shù):
(1)y=3x2+xsinx
(2)y=
x2
x+3

(3)y=xcos(2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),設(shè)a=f(ln
1
3
),b=f(log43),c=f(0.4-12),則a,b,c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M 的柱坐標(biāo)(4,
π
3
,8)化為直角坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=ax(a>0),直線l:x=-
a
4
,過點(diǎn)F(0,
a
4
)作直線l0與拋物線交于A、B兩點(diǎn),過A、B兩點(diǎn)作l的垂線垂足為A1、B1,若S A1AF=4S B1BF,則直線l0的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=ax+b的圖象如圖,其中a、b為常數(shù),則下列結(jié)論正確的是
 

①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos
π
3
=
1
2
,cos
π
5
cos
5
=
1
4
,cos
π
7
cos
7
cos
7
=
1
8
,…
(1)根據(jù)以上等式,猜想出一般的結(jié)論是
 

(2)若數(shù)列{an}中,a1=cos
π
3
,a2=cos
π
5
cos
5
,a3=cos
π
7
cos
7
cos
7
,…的前n項(xiàng)和Sn=
1023
1024
,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,過點(diǎn)P(2,0)且垂直于極軸的直線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
4-x
x+1
 的定義域是( 。
A、[-1,+∞)
B、(-∞,-1]
C、[-1,4]
D、(-1,4)

查看答案和解析>>

同步練習(xí)冊答案