7.已知f(x)是定義在R上的奇函數(shù),對任意x∈R恒有f(x-2)=f(x)+f(2),且當(dāng)x∈(0,1)時(shí),f(x)=2x-1,則f(log236)=( 。
A.35B.$-\frac{7}{16}$C.$-\frac{7}{9}$D.$\frac{7}{16}$

分析 由已知可得f(2)=0,則對任意x∈R恒有f(x-2)=f(x),結(jié)合對數(shù)的運(yùn)算性質(zhì),可得答案.

解答 解:∵f(x)是定義在R上的奇函數(shù),
∴f(0)=0,
又∵對任意x∈R恒有f(x-2)=f(x)+f(2),
∴f(2-2)=f(2)+f(2)=0,
即f(2)=0,
即對任意x∈R恒有f(x-2)=f(x),
故函數(shù)f(x)是周期為2的周期函數(shù),
∴f(log236)=f(log29)=f(log2$\frac{9}{4}$)=f(log2$\frac{9}{16}$)=-f(log2$\frac{16}{9}$)=${2}^{{log}_{2}\frac{9}{4}}$-1=-(${2}^{{log}_{2}\frac{16}{9}}$-1)=-$\frac{7}{9}$,
故選:C

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)奇偶性的性質(zhì),函數(shù)的周期性,函數(shù)求值,對數(shù)的運(yùn)算性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.關(guān)于函數(shù)f(x)=2x的圖象變換正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x|x≤2},a=$\sqrt{3}$,則下列結(jié)論中正確的是( 。
A.a⊆AB.{a}⊆AC.a∉AD.{a}∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,在四面體ABCD中,E、F分別是棱AD、BC的中點(diǎn),則向量$\overrightarrow{EF}$與$\overrightarrow{AB}$、$\overrightarrow{CD}$的關(guān)系是( 。
A.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$B.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$C.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$D.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{m}+{y^2}$=1的一個(gè)焦點(diǎn)為$({\frac{1}{4},0})$,則m的值是( 。
A.$\frac{1}{2}$B.$\frac{17}{16}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={1,a,5},B={3,b,8},若A∩B={1,3},則a+b的值為( 。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})≥\frac{1009}{2016}$的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義在R上的可導(dǎo)函數(shù)f(x)滿足f(1)=1,且2f′(x)>1,當(dāng)x∈[-$\frac{π}{2}$,$\frac{3π}{2}$]時(shí),不等式f(2cosx)>$\frac{3}{2}$-2sin2$\frac{x}{2}$的解集為(  )
A.($\frac{π}{3}$,$\frac{4π}{3}$)B.(-$\frac{π}{3}$,$\frac{4π}{3}$)C.(0,$\frac{π}{3}$)D.(-$\frac{π}{3}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)向量$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cosβ,sinβ)$,其中0<α<β<π,若$|{2\overrightarrow a-\overrightarrow b}|=|{\overrightarrow a+2\overrightarrow b}|$,則β-α=(  )
A.$-\frac{π}{4}$B.$\frac{π}{4}$C.$-\frac{π}{2}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案